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 The main objective of this course is to know the basic concepts and هدف المقرر: -2

techniques of properties of matter which will be necessary for 

scientific applications. 

 
 المستهدف من تدريس المقرر : -3

Students of Technical Health Institutes 
 

 ا. المعلومات 
 والمفاهيم :

  
By the end of this course, graduates must be able to: 

 define the basic concepts related to the properties of matter 

and appreciate how these concepts apply to teeth and bone 

fields. 

 describe the advanced solid materials according to their 

elasticity.  

 describe the elastic properties of different advanced materials. 

 state Hook's law of elasticity. 

 know the advanced applications of physical parameters related 

to teeth and bone fields. 

 identify the three fundamental physical quantities: length, 

mass, and time. 

 determine the proper units for any physical quantity using 

dimensional analysis. 

 know the main differences between the fundamental quantities 

and the derived quantities. 

 state the continuity equation for an incompressible fluid. 

 know the role of properties of matter in other disciplines, 

including engineering, chemistry, and medicine. 

 
 المهارات -ب
 

 الذهنية :
 
 
 
 
 
 
 
 

By the end of this course, graduates must be able to: 

 synthesize assessment data to formulate teeth and bone 

diagnoses. 

 assist patient to make informed health care decisions. 

 draw a diagram of Hook's law of elasticity. 

 compare among the types ofelasticity's modulii for advanced 

materials that are widely used in teeth and bone fields. 

 synthesize clinical evidence in order to solve problems related 

to the management of patient care. 

 use teaching principles in implementing educational activities 

to patient.   

 formulate nursing care plan to meet client needs that related to 

teeth and bone fields. 

 explain the different types of elasticity's module. 

 validate any physical equation. 

 
 المهارات المهنية  -ج

 الخاصة بالمقرر:
 

By the end of this course, graduates must be able to: 

 make referrals to appropriate community resources.  

 measure the outcomes of nursing activities related to teeth and 

bone fields.  
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 calculate the different parameters such as stress, strain, shear 

modulus, bulk modulus, and hardness number that are related 

to teeth and bone fields.  

 measure the coefficient of the surface tension of a liquid. 

 verify Hook's law experimentally for advanced materials. 

 measure hardness numbers of advanced materials that are 

widely used teeth and bone fields. 

 
 المهارات -د

 العامة :
 
 
 
 
 
 

By the end of this course, graduates must be able to: 

 develop strong problem-solving skills. 

 use information technology related to teeth and bone fields. 

 work effectively with a team. 

 acquire the ability of self-learning. 

 apply the communication skills in social and therapeutic 

context. 

 apply principles of leadership in different health care settings.   

 write scientific report about the recent applications of physical 

parameters related to teeth and bone fields.  

 acquire the habit of writing down the information given in a 

problem and those quantities that need to be found. 

 cooperate with other colleagues and with instructors. 

 participate other colleagues in the practical activities. 
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 The fluid flow. 
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Like all other sciences, physics is based on experimental 

observations and quantitative measurements. The main  objectives  of 

physics  are to  identify a limited number of fundamental laws that govern 

natural phenomena and use them to develop theories that can predict 

the results of future experiments. The fundamental laws used in 

developing theories are expressed in the language of mathematics, the tool 

that provides a bridge between theory and experiment. 

1.1 Measurement 

To describe natural phenomena, we must make measurements of various aspects of 

nature. Each measurement is associated  with  a physical quantity,  such as the length of an 

object. The laws of physics are expressed as mathematical relationships among physical 

quantities that we will introduce and  discuss throughout this chapter. 

1.2 Units, Standards, and the SI System 

The Physical Quantities 

In mechanics, the three fundamental quantities are length, mass, and time. All other 

quantities in mechanics can be expressed in terms of these three. 

If we are to report the results of a measurement to someone who wishes to reproduce 

this measurement, a standard must  be  defined.  It  would  be meaningless if a visitor  from 

another  planet  were  to  talk  to  us  about a length  of 8 ―glitches‖ if we  do  not know the 

meaning  of the unit  glitch.  On the other hand, if  someone  familiar   with   our  system  of  

measurement   reports   that   a  wall  is 2 meters high and our unit of length is defined to be 

1 meter, we  know that the  height of the wall is twice our basic length unit. Measurement 

standards used by different people in different places—throughout  the  Universe—must  

yield  the same result. In addition, standards used for measurements must not change with 

time. 

 

 

 

Chapter (1) 

                 Units and Dimension 
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The variables length, time, and mass are  examples  of  fundamental quantities. 

Most other variables are derived quantities, those that can be expressed as a 

mathematical combination of fundamental quantities. Common examples are  area  (a  

product  of two  lengths)  and  speed  (a  ratio  of a length to a time interval). 

Systems of Units 
 

Several systems of units have been in use over the years. Today the most important by 

far is the  Système  International  (French for International System). It is abbreviated SI, 

and its fundamental units of length, mass, and time are  the meter, kilogram, and second, 

respectively. This system used to be  called  the MKS (meter-kilogram-second) system. 

Other standards for SI fundamental units established by the committee are those for 

temperature (the  kelvin),  electric  current (the ampere), luminous intensity (the 

candela), and the amount of substance (the mole). 

A second metric system is the cgs system,  in  which  the centimeter, gram,  and 

second are the standard units of length, mass, and time, as abbreviated in the  title. 

Another system of units, the U.S. customary system, is  still  used  in  the United States 

despite acceptance of SI by the rest of the world. In this system, the units of length, mass, 

and time are the foot (ft), slug, and second, respectively. 

SI units are the principal ones used today in scientific work and industry. We will 

therefore use SI units almost exclusively in this course. 

In addition to the fundamental SI units of meter,  kilogram,  and  second,  we can also 

use other units, such as millimeters and nanoseconds, where the prefixes milli- and nano- 

denote multipliers of the basic units based on various  powers of ten. Prefixes for the various 

powers of ten and their  abbreviations  are  listed  in Table 1.1. For example, 10-3 m is 

equivalent to 1 millimeter (mm), and 103 m corresponds to 1 kilometer  (km).  Likewise,  1 

kilogram (kg) is  103  grams  (g),  and 1 mega volt (MV) is 106 volts (V). 
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Table 1.1 Prefixes for Powers of Ten 
 

 
1.3 Conversion of Units 

Sometimes it is necessary to convert units from one measurement system to 

another or convert within a system (for example, from kilometers to meters). Conversion 

factors between SI and U.S. customary units of length are as follows: 

 
Units can be treated as algebraic quantities that can cancel each other. For 

example, suppose we wish to convert 15 in. to centimeters.  Because  1  in.  is defined as 

exactly 2.54 cm, we find that 

 

where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather than 1 

in./2.54 cm) so that the  unit  ―inch‖  in  the  denominator cancels  with  the unit in the 

original quantity. The remaining unit is the centimeter, our desired result. 



x 

 

 

 

1.4 Dimensions and Dimensional Analysis 

In physics, the word dimension denotes the physical nature of a quantity. The 

distance between two points, for example, can be measured in feet, meters, or furlongs, 

which are all different ways of expressing the dimension of length. 

The symbols we use in this text to specify the dimensions of length, mass, and time are 

L, M, and T, respectively. We shall often use brackets [ ] to denote the dimensions of a 

physical quantity. For example, the symbol we use for speed  in  this book is v, and in our 

notation,  the dimensions  of speed are written [v] = L/T. As another example, the 

dimensions of area A are [A] = L2. The dimensions  and units of area, volume, speed, and 

acceleration are listed in Table 1.2. The dimensions of other quantities, such as force and  

energy,  will  be  described  as they are introduced in the text. 

 

Table 1.2 Dimensions and Units of Four Derived Quantities 

In many situations, you may have to check a specific equation to see if it matches your 

expectations. A useful  procedure for doing  that,  called  dimensional analysis, can be 

used because dimensions can be  treated  as algebraic quantities. For example, quantities 

can be added or subtracted  only  if  they have the same dimensions. Furthermore, the 

terms on both sides  of  an equation must have the same dimensions. By  following  these  

simple  rules,  you can use dimensional analysis to determine whether an expression has the 

correct form. Any relationship can be correct only if the dimensions on both sides of the 

equation are the same. 

To illustrate this procedure, suppose you are interested in an eq uation for the position 

x of a car at a time t if the car starts from rest at x = 0 and moves with constant    

acceleration    a.    The    correct    expression    for    this     situation   is 

.  The  quantity  x  on the  left  side  has  the  dimension  of length.  For  the 



 

 11 
 

 

equation to be dimensionally correct, the quantity on  the  right  side  must  also  have the 

dimension of length. We can perform a  dimensional  check  by substituting the dimensions 

for acceleration, L/T2  (Table  1.2),  and  time,  T,  into the equation.  That is,  the 

dimensional  form of the  equation is 

The dimensions of time cancel as shown, leaving the dimension of length on the right-

hand side to match that on the left. 

A more general procedure using dimensional analysis is  to  set  up  an expression  of the 

form 

 

where n and m are  exponents that  must be determined  and the  symbol α indicates a 

proportionality. This relationship is correct only if  the dimensions  of both sides are the 

same. Because the dimension of the left  side is  length,  the  dimension  of the right side 

must also be length. That is, 

 

Because the dimensions of acceleration are L/T2 and  the dimension of time  is  T, we have 

 

The exponents of L and T must be the same on both sides of the equation. From the 

exponents of L, we see immediately that n =  1.  From the exponents of T, we see that m - 

2n = 0, which, once we substitute for n, gives us  m = 2. Returning to our original expression 

x α antm, we conclude that x α at2 . 

 

Quick Quiz 1.2 
True   or   False:  Dimensional   analysis can give  you the numerical value  of 

constants of proportionality that may appear in an algebraic expression. 



xi
i 

 

 

 

 

Example 1.1 Analysis of an Equation 

Show that the expression v = at, where v represents speed, a acceleration, and t 

an instant of time, is dimensionally correct. 

Solution 

Identify the dimensions of v from Table 1.3: 
 

Identify the dimensions of a from Table 1.3 and multiply by the dimensions of t : 
 

Therefore, v = at is dimensionally  correct because we have the same dimensions on both 

sides. (If the expression were given as v = at2, it would be dimensionally incorrect. Try it 

and see!) 

Example 1.2 Analysis of a Power Law 

Suppose we are told that the acceleration a of a particle  moving  with  uniform speed v in a 

circle of radius r is proportional to some power of r, say rn, and some power of v, say vm. 

Determine the values of n and m and write the simplest form of an equation for the 

acceleration. 

Solution 

Write an expression for a with a dimensionless constant of proportionality k: Substitute 

the dimensions of a, r, and v: 

 
 
Equate the exponents of L and T so that the dimensional equation is balanced: Solve 

the two equations for n: 

Write the acceleration expression: 
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Problems 

1. The position of a particle moving under uniform acceleration  is  some 

function of time and the acceleration.  Suppose we write  this  position s 

= kamtn, where k  is a dimensionless constant. Show  by dimensional 

analysis  that this  expression is satisfied if m =1 and n = 2. Can this 

analysis give the value of k? 

-------------------------------------------------------------------------------------------------- 

2. The opposite Figure shows a frustrum of a cone. 

Of the following geometrical expressions, which 

describes 

(a) the total circumference of the flat circular faces 

(b) the volume (c) the area of the curved surface? 
 

 

 
 

 

-------------------------------------------------------------------------------------------------- 

3.  Which of the following equations are dimensionally correct? 
 

-------------------------------------------------------------------------------------------------- 

4. Newton’s law of universal gravitation is represented by 
 

Here F is the magnitude of  the gravitational force exerted  by  one small object on 
another, M and m are the masses of the objects, and r is  a distance.  Force  has the 

SI units kg.m/s2.  What are the SI units of the proportionality constant G? 
-------------------------------------------------------------------------------------------------- 

5. A worker is to paint the walls of a square room 8 ft high and 12 ft along 

each side. What surface area in square meters must she cover? 

-------------------------------------------------------------------------------------------------- 

6. Calculate the mass of a solid copper sphere that has a diameter of 3 

cm. The density of copper is 8920 kg/m3 

-------------------------------------------------------------------------------------------------- 
 



xi
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7. What is the mass of a solid  iron wrecking  ball of radius  18 cm?.  The 

density of iron is 7860 kg/m3 

8. What is the mass of a solid  iron wrecking  ball of radius  18 cm?.  The 

density of iron is 7860 kg/m3 

 

9. Express the following using the prefixes of Table 1.1: 

(a) 106 volts, (b) 10-6 meters, (c) 5×102 days, and (d) 3×10-9 pieces. 

-------------------------------------------------------------------------------------------------- 

10. Write the following as full (decimal) numbers with standard units: 

(a) 35 mm, (b) 25 V, (c) 250 mg, and (d) 500 picoseconds; 

(e) 2.5 femtometers; and (f) 25 gigavolts. 

-------------------------------------------------------------------------------------------------- 

11. (a) How many seconds are there in 1 year? (b) How many 

nanoseconds are there in 1 year? (c) How many years are there in 1 

second? 

-------------------------------------------------------------------------------------------------- 

12. (a) How   many   centimeters are there in one kilometers? How many 

millimeters in a kilometer? 
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In physics, elasticity is the ability of a material to resist a distorting influence and to 

return to its  original size and shape when that  influence  or  force  is removed. Solid 

objects will deform when adequate forces are applied on them.  If the material is elastic, 

the object will return  to  its  initial shape  and  size  when  these forces are removed. 

Most materials which possess elasticity in  practice remain  purely elastic  only up to 

very small deformations. Therefore, elastic materials are materials that return to its 

original shape and size after distorting  force  has  been  removed  or after deformation. 

2.1 Inelastic Materials 

They are materials that do not return to its  original shape  and  size  after distorting 

force has been removed or after deformation. 

 

 

Chapter (2) Elasticity 
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2.2 Hooke's Law 

This law is named after 17th-century British physicist Robert Hooke (1635- 1703). He 

first stated the law in 1676 as a Latin anagram  and  published  the  solution of his anagram in 

1678 as "the extension is proportional to the force". 

Hooke's law states that the force F needed to extend or compress a spring by some 

distance x scales linearly with respect to that distance. That is: 

  (2.1) 
where x is the position of the block relative to its equilibrium (x = 0) position and 

k is a positive constant  called  the  force constant or 

the spring  constant of the spring. In other words, the 

force required to stretch or compress a spring is 

proportional to the amount of stretch or compression 

x. This force law for springs is known as  Hooke’s  law. 

The value of k is a measure of the stiffness of the 

spring. Stiff springs have large k values, and soft 

springs have small k values. As can be seen from 

Equation (2.1), the units of k are N/m. Because  the 

spring force always acts toward the equilibrium position 

(x = 0), it is sometimes called a restoring force. 

Equation (2.1) holds (to some extent) in many other situations where an elastic body 

is deformed, such as a musician plucking a string of a guitar and the filling of a party 

balloon. An elastic material for which this equation can be assumed is said to be linear-

elastic or Hookean. 

The negative sign in Equation (2.1) signifies that the force exerted  by  the spring is 

always directed opposite to the displacement from equilibrium. 

https://en.wikipedia.org/wiki/Robert_Hooke
https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/Anagram
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Spring_(mechanics)
https://en.wikipedia.org/wiki/Elasticity_(physics)
https://en.wikipedia.org/wiki/String_(music)
https://en.wikipedia.org/wiki/Party_balloon
https://en.wikipedia.org/wiki/Party_balloon
https://en.wikipedia.org/wiki/Linear_elasticity
https://en.wikipedia.org/wiki/Linear_elasticity
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Figure 
(A) 

Figure 
(B) 

Figure 
(C) 

 

When x = 0 as in Figure  (A),  the 

spring is unstretched and Fs = 0. 

When x  0 as in Figure (B), so that 

the block is to the right of the 

equilibrium position, the spring force 

is directed to the left, in the negative 

x direction. 

When x  0 as in  Figure  (C),  the 

block is to the left  of equilibrium 

and the spring force is directed to  

the  right,  in the positive x direction. 

  
 
 
 

On the other hand, Hooke's law is an accurate approximation for most solid bodies, as 

long as the forces and deformations are small enough. For this reason, Hooke's law is 

extensively used in all branches of science and engineering,  and  is the foundation of many 

disciplines such as seismology  and  acoustics.  It  is  also the fundamental principle behind 

the spring scale, the manometer and the balance wheel of the mechanical clock. 

https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Acoustics
https://en.wikipedia.org/wiki/Spring_scale
https://en.wikipedia.org/wiki/Manometer
https://en.wikipedia.org/wiki/Balance_wheel
https://en.wikipedia.org/wiki/Balance_wheel
https://en.wikipedia.org/wiki/Mechanical_clock
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2.3 Elastic Properties of Materials 

The rigid body is a useful idealized model, but the stretching, squeezing, and 

twisting of real objects when forces are applied are often too important to ignore. 

Examples of these types of forces are shown 

in the opposite Figure. We will discuss the 

deformation of solids in terms of the  concepts   of   

stress   and   strain.   Stress   is a quantity that is 

proportional to the force causing a deformation. 

More specifically, stress  is the external force F 

acting on an object per unit cross sectional area A: 

                              (2.2) 
Thus, the stress is said to be directly proportional to 

the load and inversely proportional to the cross-

sectional area. The SI unit of stress is the newton 

per square meter (N/m2). The units of stress  are  

the same as  those of pressure, which we will 

encounter often in the next chapter. 

The usefulness of the concept of stress is  apparent. It  is  not sufficient merely to state 

the load or force that is being applied to  a dental material, because the stress that is 

produced in the material depends just as much on the cross-sectional area on which the 

load is acting as it does on the load itself. 

The result of a stress is strain, which is a measure of the degree  of deformation. Strain 

is dimensionless (no units). It is found  that,  for  sufficiently small stresses, stress is 

proportional to strain; the constant of proportionality depends on the material being 

deformed and  on  the  nature  of the  deformation. We call this proportionality constant 

the elastic modulus. We shall discuss this parameter in the following section. 
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2.4 Elastic Moduli: 

The elastic modulus is therefore defined as the ratio of  the  stress  to  the resulting 

strain: 

  (2.3) 

The elastic modulus in general relates what is done to a solid object (a force is applied) 

to how that object responds (it deforms to some extent). 

Elastic modulus is very important parameter when selecting  materials  in dentistry. In 

order to ensure the positive therapeutic effect, dental material must possess an elastic  

modulus  value  equal  or  similar   to  the  modulus  of  dentin  (15 - 25 GPa) or enamel (83 

GPa) depending on application. 

Higher value of the elastic modulus indicates a higher stiffness and lower flexibility 

of the cast construction of partial denture or other prostheses. 

We consider three types of deformation and define an elastic  modulus  for each: 

 Young’s modulus measures the resistance of a solid to a change in its 
length. 

 Shear modulus measures the resistance to motion of the planes within 

a solid parallel to each other. 

 Bulk modulus measures the resistance of solids or liquids to changes in 

their volume. 

2.4.1 Young’s Modulus: Elasticity in Length 

Consider a long bar of cross-sectional area A and initial length Li that is clamped at 

one end as in the opposite Figure. 

When an external force is  applied  perpendicular to the 

cross section, internal molecular forces in the bar resist 

distortion  (―stretching‖),  but  the bar reaches an 

equilibrium situation in which its final  length  Lf  is  

greater  than Li and  in which the 

external force is exactly balanced by the internal forces.  In  such a situation,  the  bar 

is said to be stressed. 



x
x 

 

 

 

We define the tensile stress as the ratio of the  magnitude  of the  external force F to 

the cross-sectional area A, where the cross  section is  perpendicular to the force vector. 

The tensile strain in this case is defined as the  ratio  of  the change in length  L  to  the  

original  length  Li.  We define  Young’s  modulus  by a combination of these two ratios: 

  (2.4) 

Young’s modulus is typically used to characterize a rod or wire stressed  under either 

tension or compression. Because strain is a dimensionless quantity,  Y has units of force per 

unit area. 

Quick Quiz 2.1 

While lifting a load, the steel cable of a crane stretches by 1 cm. if you want the cable 

to stretch by only 0.5 cm, by what factor must you increase its diameter? 

(a)       (b) 2      (c) (d) 4 
 

Application: Young’s Modulus of a Tendon 

The anterior tibial tendon connects your foot to the 

large muscle that runs along the side of your shinbone. (You 

can feel this tendon at the front of your ankle.) 

Measurements  show  that  this  tendon has a Young’s modulus 

of 1.2 × 109 Pa. Hence this tendon stretches substantially (up 

to 2.5% of its  length) in response to the stresses experienced 

in walking and running. 
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Example 2.1 Tensile stress and strain 
A steel rod 2 m long has a cross-sectional area of .0.3 cm2 It is hung by one end from a 

support, and a 550-kg milling machine is hung from  its  other end. Determine the stress on 

the rod and the resulting strain and elongation. Young’s modulus of steel is 2×1011 N/m2 

Solution 

The rod is under tension, so we can use the following Equation to find the tensile stress: 

 
We can use Equation 2.4 to find the corresponding tensile strain: 

 

Use the following Equation to find the resulting elongation: 
 

 

 

 

This small elongation, resulting from a load of over  half  a  ton,  is  a testament to the 

stiffness of steel. 
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2.4.2 Shear Modulus: Elasticity of Shape 

Another type of deformation occurs when an object is subjected to a force parallel to 

one of its faces  while  the opposite face is  held  fixed  by another force  as shown in the 

opposite Figure. The stress 

in this case is called a shear stress. If the object   is   

originally    a   rectangular    block, a shear stress 

results in a shape whose cross section is a 

parallelogram. A book pushed sideways  as  shown in  

the following  Figure is 

an example of an object subjected to a shear stress. To a first approximation (for small 

distortions), no change in volume occurs with this deformation. 

We define  the shear stress as F/A, the ratio  of the tangential force to the area 

A of the face being sheared. The shear strain is defined as the ratio x/h, 
where 

x is the horizontal distance that the sheared face moves and h is the height of the 

object. In terms of these quantities, the shear modulus is 

                                       (2.5) 

Like Young’s modulus, the unit of shear modulus is the ratio  of that for force to that 

for area. 
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2.4.3 Bulk Modulus: Volume Elasticity 

Bulk modulus characterizes the response of an object to changes in a force of uniform 

magnitude applied perpendicularly over the 

entire surface of the object as shown in the opposite Figure.  

(We  assume   here   the   object  is   made  of a single 

substance.) An object subject to this type of deformation 

undergoes a change in volume but no change in  shape. The 

volume  stress  is  defined  as the 

ratio of the magnitude of the total force F exerted on a surface to the area A of the 

surface. The quantity P = F/A is called pressure, which we shall study in more detail in 

Chapter 3. If the pressure on an object changes by an amount P = F/A, the object 

experiences a volume change V. The volume strain is equal to the change in volume V 

divided by the initial  volume Vi. Therefore, from Equation  2.1, we can characterize a 

volume (―bulk‖) compression in terms of the bulk modulus, which is defined as 

                   (2.6) 

A negative sign is inserted in this  defining equation  so  that  B  is  a  positive number. This 

maneuver is necessary because an increase in pressure (positive 

P) causes a decrease in volume (negative V) and vice versa. 

The reciprocal of the bulk modulus is called the compressibility of the material and is 
denoted by k: 

  (2.7) 

Compressibility is the fractional decrease in volume, - V / Vi per unit increase in 

pressure P. The units of compressibility are those of reciprocal pressure, Pa-1 or atm-1. 
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Application: Bulk Stress  on  an  Anglerfish The 

anglerfish (Melanocetus johnsoni) is found  in oceans 

throughout the world at depths as  great  as 1000 m, where 

the pressure (that is, the bulk stress) is about 100

 atmospheres. Anglerfish are able to 

withstand such stress because they have no  internal air 

spaces, unlike fish found in the upper ocean where pressures 

are lower. The largest  anglerfish  are  about 12 cm long. 

Typical values of the elastic moduli for  some  representative  materials  are given in 

Table 2.1. If you look up  such values  in a different source, you may find the reciprocal of 

the bulk modulus listed. 

Table 2.1 Typical Values for Elastic Moduli 

 

Notice from Table 2.1 that both solids and liquids have a bulk modulus. No shear 

modulus  and  no  Young’s modulus  are given for liquids,  however,  because a liquid does  

not  sustain  a shearing stress or a tensile stress. If a shearing force or a tensile force is 

applied to a liquid, the liquid simply flows in response. 
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Quick Quiz 2.2 

A block of iron is sliding across a horizontal floor. The friction force between the block and 

the floor causes the block to deform. To describe the relationship between stress and strain 

for the block, you would use (a) Young’s modulus 

(b) shear modulus (c) bulk modulus (d) none of these. 

 

Quick Quiz 2.3 

Spacecraft carries a steel sphere to a planet on which atmospheric  pressure  is  much 

higher than on the Earth. The higher pressure causes  the  radius  of  the sphere to 

decrease. To describe the relationship between stress and strain for the sphere, you would 

use (a) Young’s modulus (b) shear modulus (c) bulk modulus 

(d) none of these. 

2.6 Stress-Strain Curve 

For relatively small tensile stresses, the material  returns  to  its  initial  length when the 

force is removed. The elastic limit of a substance is defined as the maximum stress that 

can be applied to the substance before  it  becomes permanently deformed and does not 

return to its initial length. It is possible  to exceed the elastic limit of a substance by applying  

a sufficiently  large  stress  as seen in the opposite Figure. Initially, 

a stress-versus strain curve  is  a  straight line. As 

the stress increases, however, the curve is no 

longer a straight line. When the stress exceeds the 

elastic limit, the object is permanently deformed 

and does  not return to   its    original   shape   

after   the   stress is 

removed. The region from the origin to the elastic limit  is  called  the  elastic  region. If 

the object is stretched beyond the elastic limit, it enters  the  plastic region. As the stress 

is  increased  even  further,  the  material  ultimately  breaks. The maximum elongation is 

reached at the breaking  point.  The maximum  force that can be applied without breaking 

is called the  ultimate  strength  of  the material. 
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If the stress in a material is directly proportional to the strain for strains up to the 

elastic limit, the material is called a Hookean material. 

The mineral content of bone affects its mechanical property. Higher mineralization 

makes the bone stronger and stiffer  (higher  modulus  of elasticity), but it lowers the 

toughness; that is, it is less capable of absorbing shock and strain energy. 

Bone shows a linear range in which the stress increases 

in proportion to the strain. The slope of this region is 

defined as Young’s modulus, or the elastic modulus.  An 

illustration  of the material properties of bone relative to 

other materials is shown in the opposite Figure. 

Example 2.2 Squeezing a Brass Sphere 
A solid brass sphere is  initially  surrounded  by air, and the air pressure exerted on it is 

1×105 N/m2 (normal atmospheric pressure). The sphere is lowered  into  the ocean to a 

depth where the pressure is 2×107  N/m2.  The volume of the sphere in  air is 0.5 m3. By 

how much does this volume change once the sphere is submerged? 

Solution 

We perform a simple calculation involving  Equation  2.4,  so  we  categorize this 

example as a substitution problem. 

Solve Equation 2.4 for the volume change of the sphere: 
 

Substitute numerical values: 
 

The negative sign indicates that the volume of the sphere decreases. 
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2.7 Fracture 

If the stress on a solid object is so great, the object fractures or breaks. 

Table 2.2 lists  the  ultimate  tensile  strength, compressive 

strength, and shear  strength  for  a variety of materials. These 

values give the maximum force per unit area that an object can 

withstand under each of these three types of stress. They are, 

however, representative  values   only,  and   the   actual  value   

for a given specimen can differ considerably. It is therefore 

necessary to maintain a "safety factor" of from 3 to perhaps 10 or more- that is, the actual 

stresses on a structure should not exceed one-tenth to one-third of the values given in Table  

2.2.  You  may  encounter  tables  of the "allowable stresses" in which appropriate safety 

factors have already been included. 

Table 2.2 Ultimate Strengths of some Materials. 
 

Material Tensile 
Strength 

(N/m2) 

Compressive 
Strength 

(N/m2) 

Shear 
Strength 

(N/m2) 

Steel 500×106 500×106 250×106 

Brass 250×106 250×106 200×106 

Aluminum 200×106 200×106 200×106 

Concrete 2×106 20×106 2×106 

Bone (limb) 130×106 170×106  
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2.8 Hardness 

One of the most important properties of dental materials is hardness. The hardness of 

a material is defined as  its  resistance to permanent or plastic deformation. It represents the 

resistance of a material to penetration  of another much harder indenter. There are 

different procedures  for testing the  hardness, and in dentistry the most common are 

Knoop and Vickers methods. In this case, the hardness is expressed by Knoop (HKN) or 

Vickers (HVN) number. 

In the Vickers method, which is adopted in this investigation, a square- base diamond 

pyramid of face angle 136° is pressed into 

the specimen surface as shown in the opposite Figure. 

Because of the shape of the indenter, this is frequently 

called  the  diamond-pyramid  hardness test. 

The Vickers hardness number (HV) is obtained as the 

ratio of the applied load to the area of the resulting 

indentation. With the given pyramid geometry the HV is 

expressed by: 

 
 

(2.7) 
Where 

HV : Vickers hardness number (kgf/mm2) 

P : Test load on diamond indenter (gf) 

 : Opposite face angle of the tip of diamond indenter (136o) 

d : Diagonal  length  of the indentation on the specimen’s surface (µm). 

Equation (2.7) is used for calculating the HV after measuring the average value  of  the 

diagonal length of the pyramids formed on the specimen's surface. 

The Vickers hardness test has received fairly wide acceptance for  practical work 

because it provides a continuous scale of hardness, for a given load, from very soft 

materials with a HV of 5 to extremely hard materials with a HV of 1500. 
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Today, of course, advances in technology, enable  the  production of alloys with 

improved properties. Taking into  account  all  metallic  materials,  which  have so far been 

applied in dentistry and which are currently in use,  the  biggest advantage may be given to 

titanium and titanium based  alloys  due  to  their  superior properties, the economy factor 

and the most important fact that they are not harmful to the patient. 

One of the major  challenges  in  the  development  of novel dental materials  is to 

produce biomaterials exhibiting mechanical properties able  to  match  those  of the tooth 

hard structures, i.e., dentine and  enamel.  Table  2.2  summarizes  the major mechanical 

features of a  tooth.  In general,  the tooth mechanical properties are dependent on the 

patient’s age; therefore, the choice of one particular material for dental applications rather 

than another  one should  ideally  be done by  taking into account this parameter. 

Table 2.2 Mechanical Properties of a Natural Tooth. 
 

Property Dentin
e 

Ename
l 

Bending strength (MPa) 30-120 60-200 

Elastic modulus (GPa) 18-26 70-100 

Hardness (GPa) 0.7-0.8 3.0-5.5 
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Problems 

1. A 200-kg load is hung on a wire having a length of 4 m, cross-sectional 

area 0.2×10-4 m2, and Young’s modulus 8×1010 N/m2. What is  its  

increase  in  length? 

-------------------------------------------------------------------------------------------------- 

2. Assume that Young’s modulus is 1.5×1010 N/m2  for  bone and  that  the  

bone will fracture if stress greater than 1.5×108 N/m2  is  imposed  on it.  

(a)  What is  the maximum  force that  can be exerted  on the  femur  

bone in  the  leg  if  it  has a minimum effective diameter of 2.5 cm? (b) 

If this much force is applied compressively, by how much does the 25-

cm-long bone shorten? 

-------------------------------------------------------------------------------------------------- 

3. Evaluate Young’s modulus for the material 

whose stress versus-strain curve is shown in 

the opposite Figure. 

 
 
 
 
-------------------------------------------------------------------------------------------------- 

4. A child slides across a floor in a pair of rubber-soled shoes. The friction 

force acting on each foot is 20 N. The footprint area of each shoe sole 

is 14 cm2, and the thickness of each sole is 5 mm. Find the horizontal 

distance by which the upper and lower surfaces of each sole are offset. 

The shear modulus of the rubber is 3 MN/m2. 

-------------------------------------------------------------------------------------------------- 

5. If the shear stress in steel exceeds 4×108 N/m2, the steel ruptures. 
Determine 

the shearing force necessary to (a) shear a steel bolt 1 cm in diameter and 

(b) punch a 1-cm-diameter hole in a steel plate 0.5 cm thick. 

-------------------------------------------------------------------------------------------------- 
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6. When water freezes, it expands by about 9%. What pressure increase 

would occur inside your automobile engine block if the water in it froze? 

(The bulk modulus of ice is 2×109 N/m2.) 

7. The deepest point in the ocean is in the Mariana  Trench,  about 11  km 

deep. The pressure at this depth is huge, about 1.13×108 N/m2. (a) 

Calculate  the change in volume of 1 m3 of seawater carried from the 

surface to this deepest point in the Pacific ocean. (b) The density of 

seawater at  the  surface  is 1.03×103 kg/m3. Find its density at the 

bottom. The bulk modulus of water is 0.21×1010 N/m2. 

-------------------------------------------------------------------------------------------------- 

8. A 1.6 m-long steel piano wire has a diameter of 0.2 cm. How great  is  

the tension in the wire if it stretches 0.3 cm when tightened? 

-------------------------------------------------------------------------------------------------- 

9. a small elevator with a mass of 550 kg hang from a steel cable that is 3 

m long when not loaded. The wires making up the cable  have  a total 

cross -sectional area of 0.2 cm2, and with a 550 kg load, the cable 

stretches 0.4 cm beyond its unloaded length. Calculate: (a) the cable's 

stress, (b) the cable's stress and 

(c) the value of Young's modulus for the cable's steel. 

-------------------------------------------------------------------------------------------------- 

10. the bulk modulus of water is 2.1×109 N/m2.  By how  mush  does  a 

cubic meter of water decrease in volume when it is taken from surface 

of the ocean down to a depth 1 km, where the pressure is 9.8×106 

N/m2 greater than at the surface? 

-------------------------------------------------------------------------------------------------- 

11. A fluid with an initial volume  of 0.35 m3 is  subjected  to  a pressure 

decrease of 3.2×103 N/m2. The volume is then found to have  increased  

by 0.2 cm3. What is the bulk modulus of this fluid? 

-------------------------------------------------------------------------------------------------- 

12. The femur bone  in  the  leg  has  a minimum  effective  cross  section 

of about 3 cm2. How much compressive force can it withstand before 

breaking? The ultimate compressive strength of bone is 170×106 N/m2. 
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13. If a compressive force of 3×104 N is exerted on the end of a 20 cm-

long bone of cross-sectional area 3.6 cm2, (a) will the bone break, 

and (b) if not, by how much does it shorten? The ultimate 

compressive  strength  of bone  is 170×106 N/m2. Young's modulus of 

bone is 15×109 N/m2. 

-------------------------------------------------------------------------------------------------- 

14. A steel cable is to support an elevator whose total (loaded) mass is not 

to exceed 3100 kg. If the maximum acceleration of the elevator is 1.2 

m/s 2, calculate the diameter of cable required. Assume a safety 

factor of 7. The ultimate compressive strength of steel is 500×106 

N/m2. 

-------------------------------------------------------------------------------------------------- 

15. What pressure must you exert on a sample of water if you want to 

compress its volume by 0.2%? the bulk modulus of water is 0.21×1010 

N/m2
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Matter is normally classified  as  being  in  one of three  states: solid,  liquid, or gas. 

From everyday experience, we  know  that  a solid  has  a definite  volume and shape. A 

brick maintains its familiar shape  and  size day in and  day out. We also know that a liquid 

has a definite volume but no definite  shape.  Finally,  we know that an unconfined gas has 

neither a definite volume nor a definite shape. These descriptions help us picture the states 

of matter, but they are somewhat artificial. For example, asphalt and plastics are normally  

considered  solids,  but over long periods of time they tend to  flow  like  liquids.  Likewise,   

most substances can be a solid, a liquid, or a gas (or a combination of any of these), 

depending  on the   temperature   and   pressure.   In   general,   the   time   it   takes a 

particular substance to change  its  shape in response to an external force determines 

whether we treat the substance as a solid, a liquid, or  a gas.  Since liquids and gases do 

not maintain a fixed shape,  they  both  have  the  ability  to flow; they are thus often 

referred to collectively as fluids. 

 

The division of matter into three states in not always simple. How, for example, 

should butter be classified? Furthermore, a fourth state of matter can be distinguished, the 

plasma state, which occurs only at very high temperatures and consists of ionized atoms 

(electrons separated from the nuclei). 

Fluids play a vital role in many aspects of everyday life. We drink them, breathe them, 

swim in them. They circulate through our bodies and control our weather. Airplanes fly 

through them; ships float in them. A fluid is  any substance  that can flow; we use the term 

for both liquids and gases. We usually think of a gas as easily compressed and a liquid  as  

nearly  incompressible, although there are exceptional cases. 

 

 
Chapter (3)    Fluid Statics 
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The term "fluid statics" is applied to the study of fluids  at  rest,  while  the term "fluid 

dynamics" is applied to the study of fluids in motion.  First,  we consider the mechanics of a 

fluid at rest—that is, fluid statics. We then treat the mechanics of fluids in motion—that is, 

fluid dynamics in the next chapter. 

3.1 Density 

An important property of any material is its density, defined as its mass per  unit 

volume. A homogeneous material such as ice or iron has the same density throughout. We 

use (the Greek letter rho) for density. If a mass m  of homogeneous material has volume V, 

the density  is 

 

 

(3.1) 

Density is a characteristic property of any pure substance. 

Thus, two objects made of the same material have the 

same density even though  they may have different masses 

and different volumes. That’s because the ratio of mass to 

volume is the same for both objects (as shown in the 

opposite Figure). 

 

The SI unit of density is the  kilogram  per cubic meter (1 kg/m3).  The cgs unit, the 

gram per cubic centimeter (1 g/cm3), is also widely used: 

1 g/cm3 = 1000 kg/m3 

Aluminum, for example, has a  density of 2.70×103  kg/m3,  and  iron has  a density of 

7.86×103 kg/m3. An extreme difference in density can be imagined by thinking about holding 

a 10-centimeter (cm) cube of Styrofoam in one hand and a 10-cm cube of lead in the other. 

A list of densities  for various  substances  is  given  in Table 3.1. This Table specifies 

temperature and pressure because they affect the density of substances (although the 

effect is slight for liquids and solids). 
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Table 3.1 

The density of some materials varies from point to point within the material. One 

example is the material of the human body, which includes low-density fat (about 940 

kg/m3) and high-density bone (from 1700 to 2500 kg/m3). Two others  are the earth’s 

atmosphere (which is less dense at  high  altitudes)  and  oceans (which are denser at 

greater depths). For these materials, Equation (3.1) describes the average density. In 

general, the density  of a material depends on  environmental factors such as temperature 

and pressure. 

 

Quick Quiz 1.1 
In a machine shop, two cams are produced, one  of aluminum  and  one of iron. Both cams 

have the same mass. Which cam is larger? (a) The aluminum cam is larger. (b) The iron cam 

is larger. (c) Both cams have the same size. 
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3.2 Pressure in a Fluid 

Fluids do not sustain shearing stresses or tensile stresses such as those discussed in 

Chapter 2; therefore, the only stress that can be 

exerted  on an  object  submerged  in  a  static  fluid  is  one that 

tends to compress the object from all sides. In other words, the 

force exerted by a static fluid on an object is always perpendicular to 

the surfaces of the object as shown in the opposite Figure. 

The pressure in a fluid can be measured with the device pictured in the opposite 

Figure. The device consists of an evacuated 

cylinder that encloses a light piston connected  to  a spring. As the 

device is submerged in  a fluid,  the fluid  presses on the top of the 

piston and compresses the spring until the inward force exerted by 

the  fluid  is  balanced  by  the outward  force exerted  by the  

spring. The fluid  pressure can 

be measured directly if the spring  is  calibrated  in advance. If  F is  the magnitude  of the 

force exerted on the piston and A is the surface area of the piston, then the pressure P of 

the fluid at the level to which the device has been submerged  is defined as the ratio F/A: 

  (3.2) 

Note that pressure is a scalar quantity because it is  proportional to  the magnitude of the 

force on the piston. 

If the pressure varies over an area, we can evaluate the infinitesimal force 

dF on an infinitesimal surface element of area dA as 
 

(3.3) 
where P is the pressure at the location of the area dA. To calculate the total force exerted 

on a surface of a container, we must integrate Equation 3.2 over  the surface. 
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The units of pressure are newtons per square meter (N/m2) in the SI system. Other 

units sometimes used are dyne/cm2  and  Ib/in2 (sometimes  abbreviated "psi"). Another 

name for the SI unit of pressure is the pascal (Pa): 

 

As an example of calculating pressure, a 60-kg person whose two  feet cover an area 

of 500 cm2 will exert a pressure of 

 

on the ground. If the person stands on one foot, the is the same but the area will be 

half, so the pressure will be twice as much: 24×103 N/m2. 

For a tactile demonstration of the definition of pressure, hold  a  tack between your 

thumb and forefinger, with the point of the tack on your thumb and  the head of the tack on 

your forefinger. Now gently press your thumb  and forefinger together. Your thumb will begin 

to feel pain immediately while your forefinger will not. The tack is exerting the same force 

on both your thumb and forefinger, but the pressure on your thumb is  much  larger  

because of the small area over which the force is applied. 

Quick Quiz 3.1 

Suppose you are standing directly behind someone who steps back and accidentally 

stomps on your foot with the heel of one shoe. Would you  be better off if that person 

were (a) a large professional basketball player wearing sneakers 

(b) a petite woman wearing spike-heeled shoes? 

Quick Quiz 3.2 

A closed, empty soda bottle, with a diameter of 10 cm at its base and 2 cm at its top, is 

lying sideways on a desk in the air. What is the ratio of the value of the external pressure at 

its base to the value of the pressure at its cap? 

(a) 1 (b) 5 (c) 1/5 (d) 25 (e) 1/25 



x
x
x
vi

 

 

 

Example 3.1 The Water Bed 

The mattress of a water bed is 2 m long by 2 m wide and 30 cm deep. 

(A) Find the weight of the water in the mattress. 

(B) Find the pressure exerted by the water bed  on the floor when the bed 

rests in  its normal position. Assume the entire lower surface of the 

bed makes contact with the floor. 

(C) What if the water bed is replaced  by a 300-lb  ordinary bed that is  

supported  by four legs? Each leg has a circular cross section of radius 

2 cm. What pressure does this bed exert on the floor? 

Solution 

(A) The weight of the water in the mattress: 

Find the volume of the water filling the mattress: 

Use Equation 3.1 and the density of fresh water  (103  kg/m3) to  find  the mass  of the 

water bed: 

 

Find the weight of the bed: 
 
 

(B) The pressure exerted by the water bed on the floor: 
 

When the water bed is  in its  normal position, the area in  contact with the floor is 

 
Use Equation 3.2 to find the pressure: 
 

So, the pressure exerted by the water bed on the floor is 2.95×103Pa 

(C) The weight of the regular bed is  distributed  over four circular cross  

sections at the bottom of the legs. Therefore, the pressure is 
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This result is almost 100 times larger than the pressure due to the water bed! The weight of 

the regular bed, even though it is much  less  than  the  weight  of  the  water bed, is applied 

over the very small area of the four legs.  The high  pressure  on the floor at the feet of a 

regular bed could cause dents in wood floors or permanently crush carpet pile. 

3.3 Variation of Pressure with Depth 

As divers well know, water pressure increases with depth. Likewise,  atmospheric 

pressure decreases with increasing altitude; for this reason, aircraft flying at high  altitudes 

must have pressurized  cabins for the comfort of the passengers. 

We now show how the pressure in a liquid  increases  with  depth.  As  Equation 1.1 

describes, the density of a substance is defined as its mass per unit volume; Table 1.1 lists 

the densities of various substances. These values  vary slightly with temperature because the 

volume of a substance is dependent on temperature. Under standard conditions (at 0oC and 

at atmospheric pressure), the densities of gases are about 1/1000 the densities of solids and 

liquids.  This difference in densities implies that the average molecular spacing in  a gas  

under these conditions is about ten times greater than that in a solid or liquid. 

Now consider  a liquid  of density  at rest as shown 

in the opposite Figure. We assume that  is uniform throughout 

the liquid; this means that the liquid is incompressible. Let us 

select a sample of the liquid contained within an  imaginary 

cylinder of cross- sectional area A extending from depth d to 

depth d + h. The liquid external to our sample exerts forces at 

all points on the surface of the sample, perpendicular to 

the  surface.  The pressure exerted  by the liquid  on the bottom face of the sample  is P, 

and the pressure on the top face is P0.  Therefore,  the upward  force exerted by the 

outside fluid on the bottom of the cylinder has a magnitude PA, and the downward force 

exerted on the top has a magnitude P0A. The mass of liquid in 
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the cylinder is  M  =  V  =  Ah;  therefore,  the weight of the liquid  in the cylinder is Mg = 

Ahg. Because the cylinder is in equilibrium,  the  net  force acting  on it must be zero. 

Choosing upward to be the positive y direction, we see that 

 

or 

 

  (3.4) 

That is, the pressure P at a depth h below a point in the liquid at 

which the pressure is P0 is greater by an amount gh. If the liquid is 

open to the atmosphere and P0 is the pressure at the surface of the 

liquid, then P0 is atmospheric pressure. In our calculations and  working of 

end-of-chapter problems, we usually take atmospheric pressure to be 

Equation 3.3 implies that the pressure is the same at all points having the  same depth, 

independent of the shape of the container. 
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3.4 Pascal’s Principle 

Because the pressure in a fluid depends on depth and on the value 

of P0, any increase in pressure at the surface must be transmitted to 

every other point in the fluid. This concept was first recognized by 

French scientist Blaise Pascal (1623– 1662) and is called Pascal’s law: a 

change in the pressure applied to a fluid is transmitted undiminished 

to every point of the fluid and to the walls of the container. 

An important application of Pascal’s law is the hydraulic press  illustrated  in the 

opposite Figure. A force of 

magnitude F1 is applied to a small piston of 

surface area A1. The pressure is transmitted 

through an incompressible liquid to  a  larger 

piston of surface area A2. Because the 

pressure must be the same on both sides, 

 P = F1 / A1= F2/A2. Therefore, 

the  force  F2  is   greater   than   the   force  F1  by  a  factor   A2/A1.   By  designing a 

hydraulic press with appropriate areas A1 and A2, a large output force can be applied by 

means of a small input force. Hydraulic brakes,  car  lifts,  hydraulic jacks, and forklifts all 

make use of this principle as  shown in the following Figure. 
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Because liquid is neither added  nor  removed  from the  system,  the volume of liquid 

pushed down on the left  in Figure (page 29) as the piston moves downward through a 

displacement x1 equals the volume of liquid pushed  up  on the right as the right  piston 

moves  upward  through a displacement  x2.  That is, A1 x1 = A2 x2; thus, A2/A1 = 

x1/x2. We have already shown that A2/A1 = F2/F1. Thus, F2/F1 = x1/x2, so F1 x1 = 

F2 x2. Each side of this equation is the work done by the force. Thus, the work done 

by F1 on the input piston equals the work done by F2 on the output piston, as it must in 

order to conserve energy. 

Quick Quiz 3.3 

The pressure at the bottom of a filled glass of water ( =1000 kg/m3) is  P. The water is 

poured out and the glass is filled with ethyl alcohol ( =806 kg/m3). The pressure at the 

bottom of the glass is (a) smaller than P (b) equal to  P (c) larger than P (d) indeterminate. 

Example 3.2 The Car Lift 
In a car lift used in a service station, compressed air  exerts  a force on a small piston that 

has a circular cross section of radius 5 cm. This pressure is transmitted by a liquid to a 

piston that has a radius of 15 cm. 

(A) What force must the compressed air exert to lift a car weighing 13300 N? 

(B) What air pressure produces this force? 

Solution 

(A) Because the pressure exerted by the compressed air  is transmitted 

undiminished throughout the liquid, we have 

 
Solve this equation for F1: 
 
 
 
 
 

 

(B) The air pressure produces this force is 

 
This pressure is approximately twice atmospheric pressure. 
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Example 3.3 A Pain in Your Ear 
Estimate the force exerted on your eardrum due to the water above when you are swimming 

at the bottom of a pool that is 5 m deep. 

Solution 

As you descend in the water,  the pressure increases.  You may have noticed this 

increased pressure in your ears  while  diving  in  a swimming  pool,  a lake,  or the ocean. 

We can find the pressure difference exerted on the eardrum from the depth given in the 

problem; then, after estimating the ear drum’s surface area, we  can determine the net 

force the water exerts on it. 

The air inside the middle ear is normally at atmospheric pressure P0. Therefore, to 

find the net force on the eardrum, we must consider the difference between the total 

pressure at the bottom of the pool and atmospheric pressure. Let’s   estimate   the    

surface    area    of    the    eardrum    to    be   approximately 1 cm2 = 1 ×10-4 m2. 

Use Equation 3.3 to find this pressure difference: 
 

 

Use Equation 3.1 to find the magnitude of the net force on the ear: 
 

Because a force of this magnitude on the eardrum is extremely uncomfortable, swimmers 

often ―pop their ears‖ while under  water,  an  action  that  pushes  air from the lungs into 

the middle ear. Using this technique equalizes  the pressure on the two sides of the 

eardrum and relieves the discomfort. 
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3.5 Pressure Measurements 

During the weather report on a television news program, the barometric pressure is 

often provided. This reading is the current local pressure of the atmosphere, which varies 

over a small range from the standard value provided earlier. How is this pressure measured? 

One instrument used to measure atmospheric pressure is the common 

barometer,  invented  by  Evangelista  Torricelli   (1608–1647). A long 

tube closed at one end is filled with mercury and then inverted into a dish 

of mercury as shown in the opposite Figure. The closed end of the tube 

is nearly a vacuum,  so the pressure  at the top of the mercury column 

can be taken as zero. In the opposite Figure, the pressure at point A, 

due to the column of mercury, must equal the pressure at  point B, due 

to the atmosphere. If that were not the case, there would be a net 

force that would move mercury from one point to the other until equilibrium is 

established. Therefore,  P0 = Hggh, where Hg is  the density of the mercury and  h  is the 

height of the  mercury  column.  As  atmospheric  pressure varies,  the  height of the 

mercury column varies, so the height  can be calibrated to measure atmospheric pressure. 

Let us determine the height of a mercury column for one atmosphere of pressure, P0 = 1 

atm = 1.013 ×105 Pa: 

 
 

Based on such a calculation, one atmosphere of pressure is defined to be the pressure 

equivalent of a column of mercury that is  exactly  0.76  m in  height  at  0oC. Thus the 

mercury barometer reads the atmospheric pressure P0 directly from the height of the 

mercury column. 

Pressures are often described in terms of the height of the corresponding mercury 

column, as so many ―millimeters of mercury‖ (abbreviated mm Hg). 
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A pressure of 1 mm Hg is called 1  torr,  after  Evangelista  Torricelli,  inventor  of the 

mercury barometer. But these units depend on the density of mercury, which varies with 

temperature, and on the value of g, which varies with location, so the pascal is the 

preferred unit of pressure. 

A device for measuring the pressure of a gas contained in a vessel is the open-tube

 manometer illustrated in the opposite 

Figure.  One  end   of  a   U-shaped   tube   containing a liquid 

is open to  the atmosphere, and the other end is connected 

to a system of unknown pressure P. The pressures   at  

points  A   and   B   must   be  the same 

(otherwise, the curved  portion of the liquid would experience a  net  force  and would 

accelerate), and the pressure at A is the unknown pressure of the gas. Therefore, equating 

the unknown pressure P  to  the pressure at point B, we see that P = P0 + gh. The 

difference in pressure P - P0 is equal to gh. The pressure P is called the absolute 

pressure, while the difference P - P0 is called the gauge pressure PG. For example, the 

pressure you measure in your bicycle tire is gauge pressure. Thus, to get the absolute 

pressure P, one must add the atmospheric pressure P0, to the gauge pressure PG: 

 

Application: Gauge Pressure of Blood 

Blood-pressure readings, such as 130/80, give the maximum and minimum gauge 

pressures in the arteries, measured in mm Hg or torr. 

Blood pressure varies with vertical position within the body; 

the standard reference point is the upper arm, level with the 

heart. 

Quick Quiz 3.3 

Several common barometers are built, with a variety of fluids. For which of the following 

fluids will the column of fluid in the barometer be the highest? 

(a) mercury (b) water (c) ethyl alcohol (d) benzene 
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3.6 Buoyant Forces and Archimedes’s Principle 

Have you ever tried to push a beach ball down  under water (see 

the opposite Figure)? It is extremely difficult to do because of the large 

upward force exerted by the water on the ball. The upward force 

exerted by a fluid on any immersed object is called a buoyant force. 

 

We can determine the magnitude of a buoyant force  by  applying some logic. 

Imagine a beach ball–sized parcel of water beneath the water surface as shown in the 

opposite Figure. Because this parcel is in 

equilibrium, there must be an upward force that balances the 

downward gravitational force on the parcel. This upward  force is the 

buoyant force,  and  its  magnitude  is  equal to the weight of the water 

in the parcel. The buoyant force is the resultant force on the parcel 

due to all forces applied by the fluid surrounding the parcel. 

Now imagine replacing the beach ball–sized parcel  of  water  with  a  

beach ball of the same size. The net force applied  by the  fluid  

surrounding  the  beach ball is the same, regardless  of whether it  is  

applied  to  a beach ball or to a parcel of water. Consequently, the 

magnitude of the buoyant force on an object  always equals the 

weight of the fluid displaced by the object. This statement is known as 

Archimedes’s principle. 

To understand  the origin  of the buoyant force, consider a cube immersed in a liquid 

as in the opposite Figure. The pressure Pbot at the 

bottom of the cube is greater than the pressure  Ptop  at the  top by 

an amount fluidgh, where h is the height of the cube and fluid is the 

density of the fluid. The pressure at  the bottom of the cube causes 

an upward force equal to PbotA, where  A  is  the  area  of the 

bottom face.  The pressure at the 

top of the cube causes a downward force equal to  PtopA. The resultant of these  two 

forces is the buoyant force B: 
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(3.5) 

where Vdisp = Ah is the volume of the fluid displaced by the cube. Because the product 

fluid Vdisp is equal to the mass of fluid displaced by the object, 

 
where Mg is the weight of the fluid displaced  by  the  cube.  This  result  is consistent with 

our initial statement  about Archimedes’s  principle  above,  based on the discussion of the 

beach ball. 

Before we proceed with a few examples, it is instructive to discuss two common 

situations: a totally submerged object and a floating (partly submerged) object. 

Case 1: Totally Submerged Object 

When an object is totally submerged in a fluid  of density fluid,  the volume Vdisp of the 

displaced fluid is equal to the volume Vobj of the object; so, from Equation 3.4, the 

magnitude of the upward buoyant force is B = fluid g Vdisp. If the object has a mass M and 

density obj, its weight is  equal to  Fg = Mg = obj gVobj, and the net force on the object is B 

- Fg = (fluid - obj)gVobj. 

 Hence, if the density of the object is less than the density of the fluid (obj 

 fluid), the downward gravitational force is less than the 

buoyant force and the unsupported object accelerates 

upward as shown in the opposite Figure. 
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 If the density of the object is greater than the density of the fluid (obj  

fluid), the upward buoyant force is less than the downward 

gravitational force and the unsupported object sinks as 

shown in the opposite Figure. 

 
 
 
 
 

 If the density of the submerged object equals the density  of  the  fluid,  

the  net force on the object is zero and the object remains in equilibrium. 

Therefore, the direction of motion of an object submerged in a fluid is 

determined only by the densities of the object and the fluid. Thus, the 

direction of motion of an object submerged in a fluid is determined 

only by the densities of the object and the fluid. 

Case 2: Floating Object 

Now consider an object of volume Vobj and density obj   fluid in static equilibrium 

floating on the surface of a fluid—that is, an object  that  is  only partially submerged as 

shown in the opposite 

Figure. In this case,  the upward  buoyant force is 

balanced by the downward gravitational force   acting   

on   the   object.   If   Vdisp   is the 

volume of the fluid displaced by the object (this  volume  is  the  same  as  the volume of 

that part of the object that is beneath the surface of the fluid),  the buoyant force has a 

magnitude B =  fluid gVfluid.  Because the weight of the object  is  Fg = Mg  = obj gVobj, and 

because Fg = B, we see that fluid g Vdisp = obj gVobj, or 

  (3.6) 

This equation shows that the fraction of the volume of a floating object that is 

below the fluid surface is equal to the ratio of the density of the object to that 

of the fluid. 
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Quick Quiz 3.4 
An apple is held completely submerged just below the surface of a container of water. The 

apple is then moved to a deeper point in the water. Compared to the force needed to hold  

the apple just  below the surface,  the force needed to hold it at a deeper point is (a) 

larger (b) the same (c) smaller  (d)  impossible  to  determine. 

Quick Quiz 3.5 

A glass of water contains a single floating ice cube. When the ice 

melts, does the water level (a) go up (b) go down 

(c) remain the same? 
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3.7 Surface Tension 

An object less dense than water, such as an air-filled beach ball, floats  with part of  

its  volume below the surface. Conversely, a paper clip can rest atop a water surface 

even though its density is several 

times that of water. This is an example of surface tension:  

The  surface   of  the   liquid   behaves   like a membrane 

under tension, and this tension, acting parallel to the 

surface. Surface tension  arises because  the  molecules  of  

the  liquid  exert attractive 

forces on each other. Because of surface tension, insects can walk on water; and 

objects more dense than water, such as a steel 

needle, can actually float on the surface. 

 
 
 
 

More specifically, a quantity called the surface tension,  (the Greek letter gamma), 

is defined  as  the force  F  per unit  length  L  that  acts  across  any line  in a surface, 

tending to pull the surface closed: 

  (3.7) 

Surface tension explains why freely falling raindrops are spherical (not teardrop-

shaped): A sphere has a smaller surface 

area for its volume than any other shape. It also explains 

why hot, soapy water is used  for washing. To wash 

clothing  thoroughly,  water must  be forced through the 

tiny spaces between 

the fibers. To do so requires increasing the surface area of the water, which is difficult to 

achieve because of surface tension. The job is made  easier  by  increasing the temperature 

of the water and adding soap, both of which decrease  the surface tension. 
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We can see how surface tension arises by examining the process from the molecular 

point of view. The molecules of a liquid exert attractive forces on each other: these 

attractive forces are shown acting, 

in the opposite Figure, on a  molecule deep within the 

liquid and on  a  second  molecule  at the surface. The 

molecule inside the liquid is in equilibrium due to the 

forces of other molecules acting in all  directions. The 

molecule at the surface is also normally  in  equilibrium  

(the liquid is at rest). This is true even though  the forces 

on a molecule at the surface can be exerted   only by 

molecules   below  it   (or along- 

side it). Hence there is a net attractive force downward, which tends to compress  the 

surface layer slightly-but only to the point where this downward force is balanced by an 

upward (repulsive) force due to close contact or collision with the molecules below. This 

compression of the surface means that, in essence, the liquid minimizes its surface area. 

This is why water tends to  minimize  its  surface area and form spherical droplets, just as a 

stretched membrane does. 

In order to increase the surface area of a liquid, a force is required and work must be 

done to bring molecules from the interior to the surface. This  work increases the potential 

energy of the molecules and is sometimes called surface energy. The greater the surface 

area,  the  greater the surface energy. The amount  of work needed to increase the surface 

area can be calculated by: 

 

Where A is the total increase in area. So we can write 

  (3.8) 

Thus, the surface tension  is not only equal to the force per unit length; it is also equal to 

the work done per unit  increase in surface area.  Hence,    can  be specified in N/m or 

J/m2. 
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Problems 

1. Find the mass and weight of the air at 20°C in a living room with a 4 m × 

5 m floor and a ceiling 3 m high. 

-------------------------------------------------------------------------------------------------- 

2. The standard kilogram is  a  platinum–iridium  cylinder  39  mm  in  height  

and 39 mm in diameter. What is the density of the material? 

-------------------------------------------------------------------------------------------------- 

3. The mass of a solid cube is 856 g, and each edge has a length of 5.35 cm. 

Determine the density of the cube in basic SI units. 

-------------------------------------------------------------------------------------------------- 

4. A 50-kg woman balances on one heel of a pair of high heeled  shoes. If 

the  heel is circular and has a radius of 0.5 cm, what pressure does she 

exert  on  the floor? 

-------------------------------------------------------------------------------------------------- 

5. The four tires of an automobile are inflated to a gauge  pressure of 200  

kPa. Each tire has an area of 0.024 m2 in contact with the ground. 

Determine the weight of the automobile. 

-------------------------------------------------------------------------------------------------- 

6. (a) Calculate the absolute pressure at an ocean depth of 1000 m. 

Assume the density of seawater is 1024 kg/m3 and that the air above 

exerts a pressure of 

101.3 kPa. (b) At this depth, what force must the frame around a circular 

submarine porthole having a diameter of 30 cm exert  to  counterbalance  the force 

exerted by the water? 

-------------------------------------------------------------------------------------------------- 

7. The surface tension  of a liquid can be determined by measuring the 

force F needed to just lift a circular platinum ring of radius r from the 

surface of the liquid.   (a)   Find  a  formula   for     in   terms   of F  

and   r.  (b)  at  30oC,  if  F = 840 × 10-3 N and r = 2.8 cm, calculate  

for the tested liquid. 
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8. The spring of the pressure gauge shown in the opposite 

Figure has a force constant of 1000  N/m,  and  the 

piston has a diameter of 2 cm. As the gauge is lowered 

into water, what change in depth causes the piston to 

move in by 0.5 cm? 

 

-------------------------------------------------------------------------------------------------- 

9. The small piston of a hydraulic lift has a cross-sectional area of 3 cm2, 

and its large piston has a cross-sectional area of 200 cm2 as 

shown in the opposite Figure. What force must be 

applied to the small piston for the lift to raise a load of 15 

kN? (In service stations, this force is usually exerted by 

compressed air.) 

 
-------------------------------------------------------------------------------------------------- 

10. A very powerful vacuum cleaner has a hose 2.86 cm in diameter. With 

no nozzle on the hose, what is the weight of the 

heaviest brick that the cleaner can lift? (As shown in the 

opposite Figure) 

 
 
-------------------------------------------------------------------------------------------------- 

11. Blaise Pascal duplicated Torricelli’s barometer  using  a  red  Bordeaux  

wine, of density 984 kg/m3, as the working liquid (As shown in the 

opposite Figure). (a) What was the height h of the  wine  column 

for normal atmospheric pressure? (b)Would you expect the vacuum 

above the column to be as good as for mercury? 
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12. A U-tube of uniform cross-sectional area, open to the atmosphere, is 

partially filled with mercury. Water is then poured into both 

arms. If the equilibrium  configuration  of  the  tube is 

as shown in the opposite Figure, with h2 = 1cm, 

determine the value of h1. 

 
 
 

 
-------------------------------------------------------------------------------------------------- 

13. A Ping-Pong ball has a diameter of 3.8 cm and average density of 

0.084 g/cm3. What force is required to hold it completely submerged under water? 

-------------------------------------------------------------------------------------------------- 

14. A piece of aluminum with mass 1 kg and density 2700 kg/m3 is  

suspended from a string and then completely 

immersed in a container of water as shown 

in the opposite Figure. Calculate the   

tension  in   the  string  (a)  before and 

(b) after  the metal  is immersed. 

 

 
-------------------------------------------------------------------------------------------------- 

15. A cube of wood having  an  edge  dimension  of  20  cm  and  a  

density  of 650 kg/m3 floats on water. (a) What is the distance from the 

horizontal top surface of the cube to the water level? (b) How much 

lead  weight  must be placed on top of the cube so that its top is just 

level with the water? 

-------------------------------------------------------------------------------------------------- 

16. A plastic sphere floats in water with 50 % of  its  volume  submerged.  

This same sphere floats in glycerin with 40 % of its volume submerged. 

Determine  the densities of (a) the glycerin and (b) the sphere. 
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Thus far, our study of fluids has been restricted to fluids at rest. We now turn our 

attention to fluids in motion. 

4.1 Fluid Flow. 

When fluid is in motion, its flow can be characterized  as  being one of two main types. 

The flow is said to be steady, or laminar, if each particle of the fluid follows a smooth 

path such that the paths of 

different particles never cross each other as shown in 

the opposite Figure. In steady flow, every fluid 

particle arriving at a given point in space has the 

same velocity. 

Above a certain critical speed, fluid flow becomes turbulent. Turbulent  flow is 

irregular flow characterized by small whirlpool-like 

regions as shown in the opposite Figure. From this  figure  we 

observe that hot gases from a cigarette made visible by smoke 

particles. The smoke first moves in laminar flow at the bottom and 

then in turbulent flow above. 

 
 
 
 

 
Application: Listening for Turbulent Flow 

Normal blood flow in  the  human  aorta is  laminar,  but a small disturbance such as a heart 

pathology can cause the flow to become 

turbulent. Turbulence makes noise, which is why listening  

to  blood  flow   with   a   stethoscope   is a useful 

diagnostic technique. 

 

 
Chapter (4) Fluid Dynamics 
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The term viscosity is commonly used in the description of fluid flow to characterize 

the degree of internal friction in the fluid. This internal friction, or viscous force, is 

associated with the resistance that two adjacent  layers  of fluid have to moving relative to 

each other. Viscosity causes part of the fluid’s kinetic energy to be transformed to internal 

energy. This mechanism is  similar  to  the one by which an object sliding on a rough 

horizontal surface loses kinetic energy. Whether a flow is laminar or turbulent depends in  

part on the  fluid ’s  viscosity. The greater the viscosity, the  greater  the  tendency for the  

fluid  to flow in sheets  or lamina and the more likely the flow is to be laminar. 

Because the motion of real fluids is  very  complex  and  not fully understood, we make 

some simplifying assumptions in our approach. In our simplification  model of ideal fluid 

flow, we make the following four assumptions: 

1. The fluid is nonviscous. In a nonviscous  fluid,  internal friction  is  

neglected. An object moving through the fluid experiences no viscous 

force. 

2. The flow is steady. In steady (laminar) flow, all particles passing through 

a point have the same velocity. 

3. The fluid is incompressible. The density  of an incompressible fluid is 

constant. 

4. The flow is irrotational. In irrotational flow, the fluid has no  angular 

momentum about any point. If a small paddle wheel placed anywhere 

in  the  fluid does not rotate about the wheel’s center of mass, the 

flow is irrotational. 

The path taken by a fluid particle under steady flow is called a streamline. 

The velocity of the particle is always tangent to the streamline 

as shown in the opposite Figure. A set of streamlines like the 

ones  shown  in  this  Figure  form a tube of flow. Fluid 

particles cannot flow into or out of the sides of this tube; if 

they could, the streamlines would cross one another. 
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4.2 Equation of Continuity 

Consider   an  ideal  fluid flowing  through a pipe of nonuniform  size, as 

illustrated in the opposite Figure. The 

particles in the fluid move along 

streamlines in steady flow. In a  time interval t, 

the fluid at the bottom end of the pipe moves a 

distance x1 = v1t. If A1 is the cross-sectional 

area in this region, then the mass  of fluid 

contained  in  the left 

blue region in this Figure is given by m1 = A1x1 = A1v1t, where  is the (unchanging) 

density of  the  ideal  fluid.  Similarly,  the  fluid  that  moves  through the  upper  end  of  

the  pipe  in  the  time  interval  t  has  a  mass  m2  =  A2x2  = 

A2v2t.  However,  because  the  fluid  is  incompressible  and  because  the  flow is 

steady, the mass that crosses A1 in a time interval t must equal the mass that crosses A2 in 

the same time interval. That is, m1 = m2,  or  A1v1 =  A2v2;  this means that 

 

 

 

This expression is called the equation of continuity for fluids. It 
states that 

(4.1) 

 

 
Equation 4.1 tells us that the speed is high where the tube is constricted (small A)  and low 

where the tube is wide (large A). The product Av,  which  has  the dimensions of volume per 

unit time, is called either  the  volume flux  or the  flow rate. The condition Av =  constant  

is  equivalent  to  the  statement that the volume of fluid that enters one end of a tube in a 

given time interval equals the volume leaving the other end of the tube in the same time 

interval if no leaks are present. 

the product of the area and the fluid speed at all points along a pipe is  

constant  for an incompressible fluid. 
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You demonstrate the equation of continuity each time you water your garden with 

your thumb over the end of a garden 

hose as shown in the opposite Figure. By partially 

blocking the opening with your thumb, you reduce 

the cross-sectional area through which the water 

passes. As a result, the speed of the water increases  

as  it  exits the hose, and the water  can be sprayed  

over a long distance. 

Quick Quiz 4.1 

You tape two different soda straws together end-to-end to make  a longer  straw with no 

leaks. The two straws have radii of 3 mm and 5 mm. You drink a soda through your 

combination straw. In which straw is the speed of the liquid the highest? (a) whichever one is 

nearest your mouth (b) the one of radius 3 mm 

(c) the one of radius 5 mm (d) Neither—the speed is the same in both straws. 

Quick Quiz 4.2 
The volume per second of water that flows through each two pipes  is  the same. The flow 

velocity in the first pipe is  one-quarter of that  in  the second  pipe. What is the ratio of the 

radius of the first pipe to the radius of the second pipe? 

(a) 2 (b) 4 (c) 1/2 (d) 1/4 (e) 1 

Example 4.1 Niagara Falls 
Each second, 5525 m3 of water flows over the 670-m-wide cliff of the Horseshoe Falls 

portion of Niagara Falls. The water is approximately 2 m deep  as  it  reaches the cliff. What 

is its speed at that instant? 

Solution 

The cross-sectional area of the water as it reaches the edge of the cliff is 
 

The flow rate of water is 5525 m3/s. This gives Since 
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4.3 Bernoulli’s Equation 

You have probably experienced driving on a highway and  having  a  large  truck pass 

you at high speed. In this situation, you may have had the frightening feeling that your car 

was being pulled in toward the truck as it passed. We will investigate the origin of this effect 

in this section. 

As a fluid moves through a region  where  its  speed  and/or elevation  above the 

Earth’s surface changes, the pressure in the fluid varies  with  these  changes. The 

relationship between fluid speed, pressure, and elevation was first derived in 1738 by the 

Swiss physicist Daniel Bernoulli. 

Consider the flow of a segment of an ideal fluid  through a nonuniform  pipe  in a time 

interval t, as illustrated 

in the opposite Figure. At the 

beginning of the time interval, the 

segment of fluid consists  of  the blue 

shaded portion (portion 1) at the left and 

the unshaded portion. During the time 

interval,  the left end   of  the  segment  

moves   to the 

right by a distance x1, which is the length of the blue shaded portion at the left. 

Meanwhile, the right end of the segment moves to the right through a distance 

x2, which is the  length  of  the blue shaded  portion (portion 2) at the upper right of this 

Figure. Thus, at the end  of the time  interval,  the segment  of fluid  consists of the 

unshaded portion and the blue shaded portion at the upper right. 

Now consider forces exerted on this segment by fluid to  the  left  and  the  right  of 

the  segment.   The   force   exerted   by the  fluid   on the  left  end   has  a  magnitude  

P1A1.  The work done by this  force on the segment  in  a time  interval 

t is  W1  =  F1x1  =  P1A1x1  =  P1V,  where  V  is  the  volume  of portion 1.  In  a similar 

manner, the work done by the fluid  to  the right  of the segment  in  the same time interval 

t is W2 = - F2x2 = - P2A2x2 = - P2V.  (The  volume  of  portion  1  equals   the volume of 

portion  2.)  This  work  is  negative  because the 
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force on the segment of fluid is to the left and  the displacement  is  to  the right. Thus, the 

net work done on the segment by these forces in the time interval t is 

 
Part of this work goes into changing the  kinetic  energy  of the  segment  of fluid, and part 

goes into changing the gravitational potential energy of the  segment– Earth system. 

Because we are assuming streamline flow, the kinetic energy of the unshaded portion of the 

segment in the  above  Figure  is  unchanged  during  the time interval. The only change is as 

follows: before the time interval we have portion 1 traveling at v1, whereas after the time 

interval, we have portion 2 traveling at v2. Thus, the change in the kinetic energy of the 

segment of fluid is 

 

where m is the mass of both portion 1 and portion 2. (Because  the  volumes  of both 

portions are the same, they also have the same mass.) 

Considering the gravitational potential energy of the segment–Earth system, 

once again there is no change during the time interval for the unshaded portion of  the fluid. 

The net change is that the mass of the fluid in portion 1 has  effectively been moved to the 

location  of portion 2. Consequently, the change in gravitational potential energy is 

 

The total work done on the system by the fluid outside the segment is equal to the change 

in mechanical energy of the system: W =  K + U.  Substituting  for each of these 

terms, we obtain 

 

If we divide each term by the portion volume V and recall that  = m/V, this expression 

reduces to 

 

Rearranging terms, we obtain 
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(4.2) 

This is Bernoulli’s equation as applied to an ideal fluid. It is often expressed 
as 

                        (4.3) 

Bernoulli’s equation shows that the pressure of a fluid decreases as  the speed  of the fluid 

increases. In addition, the pressure decreases as the elevation increases. This latter  point 

explains why water pressure from faucets on the upper floors of a tall building is weak 

unless measures are taken to  provide higher  pressure for these upper floors. 

When the fluid is at rest, v1 = v2 = 0 and Equation 4.2 becomes 
 

This result is in agreement with Equation 3.3. 

Although Equation 4.3 was derived for an incompressible fluid, the general behavior of 

pressure with speed is true even for gases: as the speed increases, the pressure decreases. 

This Bernoulli effect explains  the  experience  with  the  truck on the highway at the 

opening of this section. As air passes between you and the truck, it must pass through a 

relatively narrow channel. According to the continuity equation, the speed of the air is 

higher.  According  to  the  Bernoulli effect, this higher speed air exerts less pressure on 

your car than  the  slower- moving air on the other side of your  car. Therefore,  there is  a 

net force pushing you toward the truck! 

Quick Quiz 4.3 

You observe two helium balloons floating next to  each  other  at  the  ends  of strings 

secured to a table. The facing surfaces of the  balloons  are  separated  by 1–2 cm.  You 

blow through the small space between the balloons.  What happens  to the balloons? (a) 

They move toward each other.  (b) They  move away from each other. (c) They are 

unaffected. 
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4.4 Some Applications of Bernoulli’s Equation Example 4.2 

The Venturi Tube 

The horizontal constricted pipe illustrated  in  the following  Figure,  known as a 

Venturi tube, can be used to measure the flow speed of an incompressible fluid. 

Determine the flow speed at point 2 if the pressure difference P1 - P2 is known. 

 

Solution 

Bernoulli’s equation shows how the  pressure of  an ideal fluid  decreases as  its speed 

increases. Therefore, we should be able to  calibrate a device to give us the fluid speed if 

we can measure pressure. 

Because the problem states that  the  fluid  is  incompressible,  we  can categorize it as 

one in which we can use the equation of continuity for fluids and Bernoulli’s equation. 

Apply Equation 4.2 to points 1 and 2, noting that y1 = y2 because the pipe is horizontal: 

 

 

 
Solve the equation of continuity for v1: 
 

Substitute this expression into Equation (1): 

         (1) 

 
 

 
(2) 

 

 



 

 63 
 

 

 

Solve for v2: 
 

From the design of the tube (areas A1 and A2) and measurements of the pressure difference 

P1 - P2, we can calculate the speed of the fluid with this  equation. Because A2  A1, 

Equation (2) shows us that v2  v1. This result, together with Equation (1), indicates that P1  

P2. In other words, the pressure is reduced in the constricted part of the pipe. 

Example 4.3 Torricelli’s Law 

An enclosed tank  containing  a  liquid  of  density   has  a  hole  in  its  side at a 

distance y1 from the tank’s bottom as 

shown in the opposite Figure. The hole is open to 

the atmosphere, and its diameter is much smaller 

than the diameter of the tank. The  air  above  the  

liquid  is  maintained  at a pressure P. Determine 

the speed of the liquid as  it  leaves the hole when  

the liquid’s level is a distance h above the hole. 

Solution 

Imagine that the tank is a fire extinguisher. When the hole is opened, liquid leaves the 

hole with a certain speed. If the pressure P at the top of the liquid is increased, the liquid 

leaves with a higher  speed.  If the pressure  P  falls  too  low,  the liquid leaves with a low 

speed and the extinguisher must be replaced. 

Looking at the above Figure, we know the pressure at two points and the velocity at 

one of those points. We wish to find the velocity at the second point. Therefore, we can 

categorize this example as one in which we can apply Bernoulli’s equation. 

Because A2  A1, the liquid is approximately at rest at the top of the tank, where 

the pressure is P. At the hole, P1 is equal to atmospheric pressure P0. 
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Apply Bernoulli’s equation between points 1 and 2: 
 

Solve for v1, noting that y2 - y1 = h: 
 

 

 When P is much greater than P0 (so that the term 2gh can be neglected), 

the exit speed of the water is mainly a function of P. 

 If  the  tank  is  open  to  the  atmosphere,  then  P  =  P0 and 

. In other words, for an open tank, the speed of the liquid leaving a hole a 

distance  h below the surface is equal to that acquired by an object falling 

freely through a vertical 

distance h. This phenomenon is known as Torricelli’s law. 
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4.5 Viscosity 

If you ever drifted in a boat on a gentle river, you may have noticed that  your boat 

moved faster in the middle of the river than very  close to  the  banks. Why would this 

happen? If the water in the river were an ideal fluid in  laminar motion, it should make no 

difference how far away from shore you are. However, water is not quite an ideal fluid. 

Instead, it has some degree of "stickiness," called viscosity. For water, the viscosity is quite 

low; for heavy motor oil,  it  is significantly higher, and it is even higher yet for substances 

like honey, which flow  very  slowly. Viscosity causes the fluid streamlines at the surface 

of a river to partially stick to the boundary and neighboring streamlines  to  partially stick to 

one another. Therefore, the viscosity of a fluid is a measure of the  fluid’s resistance to 

flow or it is internal friction in a fluid. Viscous forces oppose the motion of one portion of a 

fluid relative to  another. Viscous  effects are important  in the flow of fluids in pipes, the  

flow of blood,  the  lubrication  of engine parts, and many other situations. 

The velocity profile for the streamlines in viscous flow in  a  tube  is sketched in the 

opposite Figure. The profile is 

parabolic, with the velocity approaching zero at the walls 

and reaching its maximum value in the center. This flow is  

still  laminar,  with  the streamlines all flowing parallel to one 

another. 

How is the viscosity of a fluid measured? The standard procedure is to use two 

parallel plates of area A and fill the gap  of width  h  between them with  the  fluid. Then 

one of the plates is dragged across 

the other and the force F that is required to  do so is 

measured.  The  resulting  velocity  profile of the fluid 

flow is linear as  shown in the opposite   Figure.    The   

viscosity   of  different 

fluids  can  be  expressed  quantitatively  by  a  coefficient  of  viscosity   (the 

Greek 

lowercase  letter  eta).  Coefficient  of viscosity  is  defined  as  the  ratio  of the force 
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per unit area divided by the velocity difference between the top and bottom plates over 

the distance between the plates: 

  (4.4) 

The unit of  represents pressure (force per unit area)  multiplied  by  time,  or pascal 

seconds (Pa.s). This unit is also called a poiseuille (Pl). 

It is important to realize that the viscosity of any fluid depends strongly on 

temperature. You can see an example of this temperature dependence in the kitchen. If 

you store olive oil in the refrigerator and  then pour it from the bottle,  you can see how 

slowly it flows. Heat the same olive oil in a pan, and it  flows almost as readily as water. 

Temperature dependence is of great concern for motor oils, and the goal is to  have a small 

temperature dependence.  Lava is  an example  of a viscous fluid. The viscosity decreases 

with 

increasing temperature: The hotter the lava,  the more 

easily it can flow. Table  4.1  lists  some typical coefficient 

of viscosity values for different fluids.   All values   are  

those  at  room temperature 

(20oC) except that of blood, whose value is given for the physiologically relevant 

temperature of human body temperature (37 oC). incidentally, the coefficient of viscosity of 

blood increases by about 20% during a human's lifetime, and the average value for men is 

slightly higher than that for women (4.7×10-3 Pa.s vs. 4.3×10-3 Pa.s). 

Care must be taken to avoid confusing this SI unit with the cgs unit 
poise (P), 

because 1 Pa.s =10 P. 
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Table 4.1 Some Typical Values of Coefficient of Viscosity at Room Temperature. 

Material Coefficient of Viscosity 
(Pa.s) 

Air 1.8×10-5 

Alcohol (ethanol) 1.1×10-3 

Blood (at body temperature) 4.0×10-3 

Honey 10 

Mercury 1.5×10-3 

Olive oil 0.08 

Water 1.0×10-3 

The viscosity of water is used as a reference to calculate other fluids’ viscosity and is 

considered to be 1. The capsule of diarthrodial joints is normally filled with a fluid of 

viscosity 10 called synovial fluid. This fluid helps to reduce friction and wear of articulating 

surfaces. Just for comparison,  the  viscosity of olive oil, for example, is 84. 
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4.6 Poiseuille`s Equation 

If a fluid had no  viscosity,  it  could  flow through a level tube or pipe without a force 

being applied. Because of viscosity, a pressure  difference  between  the ends of a tube is  

necessary for the  steady flow of any real fluid, be it water or oil  in a pipe, or blood in the 

circulatory system of a human, even  when  the tube is level. 

The rate of flow of a fluid in a round tube depends on the viscosity of the  fluid, the 

pressure difference, and the dimensions of  the  tube.  The  French  scientist J. L. Poiseuille 

(1799-1869), who was interested in the physics of blood circulation (and after whom the 

"poise" is named), determined how the variables affect  the   flow   rate   of  an  

incompressible  fluid   undergoing   laminar   flow in a cylindrical tube. His result, known as 

Poiseuille's equation, is as follows: 

                                    (4.5) 

where r is the inside radius of the tube, L is its length, P1-P2 is the  pressure difference 

between the ends,  is the coefficient 

of  viscosity,  and  Q  is  the  volume  rate  of flow 

(volume of fluid flowing past a given point per unit time). 

Equation 4.5 applies to laminar flow. There is no such 

simple mathematical relation if the flow is turbulent. 

Poiseuille's equation tells us that the flow rate Q  is  directly proportional to the 

"pressure gradient," (P1-P2)/L, and it is inversely proportional to the viscosity of the fluid. 

This is just what  we  might  expect.  It  may  be surprising,  however, that Q also depends 

on the fourth power of the tube's radius. This means that for  the same pressure gradient, 

if the tube radius is  halved,  the flow rate is  decreased by a  factor  of  16!  Thus  the rate 

of flow, or alternately the required to maintain a given flow rate, is greatly affected by 

only a small change in tube radius. 
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Blood Flow and Heart Disease 

An interesting example of this r4 dependence is blood flow in the human body. 

Poiseuille's equation is valid only for the streamline flow of an incompressible fluid with 

constant viscosity ; so it cannot be precisely accurate for blood whose flow is not without 

turbulence and that contains corpuscles (whose diameter is almost equal to that of a 

capillary). Hence  depends to a certain extent on the  blood flow speed v. Nonetheless, 

Poiseuille's equation  does  give  a  reasonable first approximation. The body controls the 

flow  of blood by means  of tiny bands of muscle surrounding the arteries. Contraction of 

these muscles reduces the diameter of an artery and, because of the r4 in  Equation  4.5,  

the  flow  rate  is greatly reduced for only a small change in radius. Very small actions by 

these muscles can thus control precisely the flow of blood to  different  parts  of  the body. 

Another aspect is that the radius of arteries is reduced as a result of arteriosclerosis 

(hardening of the arteries) and by cholesterol buildup; when this happens, the pressure  

gradient  must be increased  to  maintain  the same flow rate. If the radius  is  reduced  by 

half,  the heart would  have to  increase the pressure by a factor of about 16 in order to 

maintain the same blood-flow rate. The heat must work much harder  under  these 

conditions, but usually  cannot  maintain  the original flow rate. Thus, high blood pressure is 

an indication both that the heart is working harder and that the blood-flow rate is reduced. 

Example 4.4 
Engine oil (its coefficient of viscosity is 0.2 Pa.s) passes through a fine 1.8 mm- diameter 

tube in a prototype engine. The tube is 5.5 cm long. What pressure difference is needed to 

maintain a flow rate of 5.6 mL/min? 

Solution 

The flow rate in SI units is Q = 5.6×10-6 m3/60 s = 9.33×10-8 m3/s. We solve for 

P1-P2 in Eq. 4.5 and put all terms in SI units: 
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or about 0.04 atm. 

 
4.7 Reynolds number 

If the flow velocity is large,  the  flow  through  a tube will  become turbulent and 

Poiseuille's equation will no longer hold.  When  the  flow  is  turbulent, the  flow rate Q for 

a given pressure difference will be less than for laminar  flow as  given in Equation 4.5 

because friction forces are much greater when turbulence is present. 

The onset of turbulence is often abrupt and can be characterized approximately by 

the so-called Reynolds number, Re: 

  (4.6) 

Where    is the average speed of the fluid,  is its density,  is its coefficient of viscosity, 

and r is the radius of the tube in which the fluid is flowing. Notice that 

Reynolds number Re is a dimensionless quantity. This means  that  Re  

has  no units. 

Experiments show that the flow is laminar if Re has a value less than about 2000, but 

is turbulent if Re exceeds this value. 

Example 4.5 
The average speed of the blood in  the aorta (r =  1 cm) during the resting part of the 

heart's cycle is about 30 cm/s. Is  the  flow laminar  or turbulent?.  Density  of  the blood is 

1.05×103 kg/m3. 

Solution 

To answer this, we calculate the Reynolds number using Equation 4.6: 
 
 

The flow will probably be laminar, but is close to turbulence. 
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Problems 

1. A horizontal pipe 10 cm in diameter has a smooth reduction to a pipe 5 

cm in diameter. If the pressure of the water in the larger pipe is 8 × 104 

Pa and the pressure in the smaller pipe is 6 × 104 Pa, at what speed 

does water flow through the larger pipe? 

-------------------------------------------------------------------------------------------------- 

2. A large storage tank, open at the top and filled with  water,  develops  a  

small hole in its side at a point 16 m below the water  level.  If  the  rate 

of flow  from the leak is equal to 2.5×10-3 m3/min,  determine (a)  the  

speed  at  which  the water leaves the hole and (b) the diameter of the 

hole. 

-------------------------------------------------------------------------------------------------- 

3. Water flows through a fire hose of diameter 6.35 cm at a rate of 0.012  

m3/s.  The fire hose ends in a nozzle of inner diameter 2.2  cm.  What  

is  the  speed with which the water exits the nozzle? 

-------------------------------------------------------------------------------------------------- 

4. The radius  of  the aorta  is  about  1  cm and  the blood  flowing  

through  it  has a speed of about 30 cm/s. Calculate the average speed 

of the blood in the capillaries given that, although each capillary has 

a diameter  of  about 8×10-4 cm, there are literally billions of them so 

that their total cross section is about 2000 cm2. 

-------------------------------------------------------------------------------------------------- 

5. The opposite Figure shows a stream of water in 

steady flow from a kitchen faucet. At the faucet the  

diameter  of the stream is 0.96  cm. The  stream  fills  

a  125-cm3 container in 16.3 s. Find the diameter of 

the stream 13 cm below the opening of the faucet. 
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6. Through a pipe 15 cm in diameter, water is  pumped  from the Colorado  

River up to Grand Canyon Village, located  on the rim  of the canyon.  

The river  is  at an elevation of 564 m, and the village is at an elevation of 

2096 m.  (a)  What is the minimum pressure at which the water must be 

pumped  if  it  is  to  arrive  at the village? (b) If 4500 m3 are pumped  per 

day, what is  the speed  of the water in the pipe? 

-------------------------------------------------------------------------------------------------- 

7. A Venturi tube may be used as  a fluid  flow meter.  If the difference in  

pressure is P1 - P2 = 21 kPa, find the fluid flow rate in cubic meters  per 

second,  given  that the radius of the outlet tube is  1 cm, the  radius  of 

the inlet  tube is  2 cm,  and the fluid is gasoline ( = 700 kg/m3). 

-------------------------------------------------------------------------------------------------- 

8. According to the plate tectonic model, the plates supporting the earth's  

continents move very slowly on the hot deformable rock below. Show 

that this flow is laminar using the following data: speed v = 50 mm/yr, 

density and viscosity of deformable rock below are  = 3200 kg/m3 and 

 = 4×1019 Pa.s, with thickness  100 km. 

-------------------------------------------------------------------------------------------------- 

9. What must be the pressure difference between the two ends of a  1.9-

km section of pipe, 35 cm in diameter, if it is to transport oil ( = 950 

kg/m3, 

 = 0.2 Pa.s) at a rate of 450 cm3/s? 
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