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This book presents an integrated lumped course targeting the electric circuits, and 

control systems. The main objective is to provide the students the capability of dealing 

with the general control problem with focus on practical electrical systems. Consequently, 

the modeling and analysis of basic DC and AC electric circuits are presented in this book. 

In addition, the basic electronic switching circuits used in industrial applications are also 

presented. The control of electric systems which is the main core of this book is given a 

significant focus.  

The book consists of six chapters. The first chapter presents an introduction to 

control systems. The objectives of this chapter include the identification of the 

requirements of control systems. In addition, the chapter presents an overview of the 

fundamentals of control systems used in industrial applications. The second chapter 

presents the fundamental of DC electric circuits, and the basic theories for their 

modeling, and analysis. The third chapter handles the single-phase AC electric circuits, 

while the fourth chapter presents the electronic switches, and the single-phase switching 

circuits used in industrial and power applications. Chapter 5 presents the modeling, and 

representation of general control systems with focus on practical electric circuits, and 

systems. The last chapter presents block diagrams representation of control systems, and 

examples of the analysis of responses of control systems. 

Core Knowledge   

By the end of this course, students should be able to: 

 Define the functions of various elements of electric circuits and control 

systems. 

 List various types of control systems. 

 List various types of power electronic switches used in industrial applications 

and control systems. 

   Core Skills  

By the end of this course, students should be able to: 

 Describe the basic control system requirements. 

 Give practical examples of the applications of automatic control systems. 

 Model and solve DC circuits. 
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 Model and solve single-phase AC circuits. 

 Model and solve basic single-phase power switching circuits,. 

 Devise the structure of control systems for specific control targets. 

 Solve Laplace transform, and inverse Laplace transform problems. 

  Determine the transfer functions of electric circuits, and some industrial 

systems. 

 Represent physical systems by mathematical models for use in control system 

representation. 

 Represent control systems using block diagrams. 

 Analyze the dynamic response of first order systems. 
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Objectives 

 The objectives of this chapter include the identification of the requirements of control 
systems. In addition, the chapter presents an overview of the fundamentals of control systems 
used in industrial applications. 
 

Introduction   
The control systems are formed by integrating elements. The function of these 

elements is to maintain a process variable at a desired value or within a desired range of 
values. Requiring the human operator to take all of the required corrective action manually is 
impractical, or sometimes impossible, especially if a large number of indications must be 
monitored simultaneously, and fast actions should be taken at appropriate times. For these reasons, 
most systems are controlled automatically once they are operating under normal conditions. 
Automatic controls greatly reduce the burden on the operator and make his or her job 
manageable. Process variables requiring control in a system include, but are not limited to, 
flow, level, temperature, pressure, voltage magnitude, and power flow. Some systems do not 
require all of their process variables to be fully controlled.  

Automatic control systems, neither replace nor relieve the operator of the 
responsibility for maintaining the facility by performing fully automatic actions. The operation 
of the control systems is periodically checked by the operators to verify proper operation. If a 
control system fails, the operator must be able to take over and control the process manually. 
In most cases, understanding how the control system works aids the operator in determining 
the system is operating properly and which actions are required to maintain the system in a 
safe condition. Automatic control systems as essential parts in many applications such as 
various industries, transport, and household equipment. 

  

Historical Timeline of Control Systems  

 

 James Watt’s centrifugal governor for the speed control of a steam engine, in the 

eighteenth century. 

 In 1922, Minorsky  worked on automatic controllers for steering ships, and showed how 

stability could be determined from the differential equations describing the system. 

 In 1932 Nyquist developed a relatively simple procedure for determining the stability of 

a closed-loop system. 

 In 1934 Hasen introduced the term “servomechanisms” for position control systems, 

and designed the relay servomechanisms, capable of closely following a changing input. 
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 During the 1940’s frequency-response methods were used to design linear feedback 

control systems. 

 From the end of the 1940’s to early 1950’s, the root-locus method in control system 

design was fully developed. 

 Since the late 1950’s, the emphasis in control system design concentrated on the 

design of optimal control systems.  

 Since about 1960, modern control systems with multi-input-multi-output variables were 

developed. 

 Digital control systems emerged in the late 1970’s. 

 Highly developed computer control systems started since the early 1980’s. 

 

Definitions and Terminology 

 

 Plants. A plant is a piece of equipment, or set of machine parts, or a set of machines 

which performs a particular operation(s). It is the object to be controlled. 

 Processes. A process may be defined as a natural, progressive continuing operation that 

leads toward a particular result or end. 

 Systems. A system is a combination of components that act together and perform a 

certain objective. 

 Disturbances. A disturbance is a signal which tends to adversely affect the value of the 

output of the system. There are internal and external disturbances. 

 Control system. A control system is a system of integrated elements whose function is 

to maintain a process variable at a desired value or within a desired range of values. 

The control system monitors a process variable or variables, then causes some action to 

occur to maintain the desired system parameter. In the example of the central heating 

unit, the system monitors the temperature of the house using a thermostat. When the 

temperature of the house drops to a preset value, the furnace turns on, providing a 

heat source. The temperature of the house increases until a switch in the thermostat 

causes the furnace to turn off.  

 Control system input. The control system input is the stimulus applied to a control 

system from an external source to produce a specified response from the control 

system. In the case of the central heating unit, the control system input is the 

temperature of the house as monitored by the thermostat. 

 Control system output. Control system output is the actual response obtained from a 

control system. In the example above, the temperature dropping to a preset value on 

the thermostat causes the furnace to turn on, providing heat to raise the temperature 

of the house. 

 Feedback control. Feedback control is an operation which, in the presence of 

disturbances, tends to reduce the difference between the output of a system and the 

reference input, and which does so, on the basis of this difference. 

 Feedback control systems. A feedback control system is one which tends to maintain a 

prescribed relationship between the output and the reference input by comparing 

these and using the difference as a means of control. 

 Servomechanisms. A servomechanism is a feedback control system in which the output 

is some mechanical position, velocity, or acceleration. 
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 Automatic regulating systems. An automatic regulating system is a feedback control 

system in which the reference input or the desired output is either constant or slowly 

varying with time, and in which the primary task is to maintain the actual output at the 

desired value despite the presence of disturbances. 

 Process control systems. An automatic regulating system in which the output is a 

variable such as temperature, pressure, flow, or liquid level is  called by a process 

control system. 

 Controlled variable. A controlled variable is the process variable that is maintained at 

a specified value or within a specified range. In the previous example, the storage tank 

level is the controlled variable. 

 Manipulated variable. A manipulated variable is the process variable that is acted on 

by the control system to maintain the controlled variable at the specified value or 

within the specified range. In the previous example, the flow rate of the water 

supplied to the tank is the manipulated variable. 

 

Closed-Loop Control Systems and Open-Loop Control 

 Control systems are classified by the controller action, which is the quantity 

responsible for activating the control system to produce the output. The two general 

classifications are open-loop and closed-loop control systems. 

An open-loop control system is one in which the control action is independent of the 

output (see Fig. 1). Any control system which operates on a time basis is open-loop. 

Examples: washing machine, traffic lights… etc. A closed-loop control system is one in which 

control action is dependent on the output as shown in Fig. 2. 

 

 

 
Fig. 1: Open-loop control systems 

 

 

 
Fig. 2: Closed-loop control system. 

 

An advantage of the closed-loop control system is that the use of feedback makes the 

system response relatively insensitive to external disturbances or internal variations in system 

parameters. From the point of view of stability, the open-loop control system is easier to 
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build since stability is not a major problem. On the other hand, stability is always a major 

problem in the closed-loop control system since it may tend to overcorrect error which may 

cause oscillations of constant or changing amplitude. A proper combination of open-loop and 

closed-loop controls will usually less expensive and give satisfactory overall system 

performances. Figs. 3, and 4 illustrate the open-loop, and closed-loop control of a thermal 

system. The reader is required to explain the functions of these control options. 

 

 

 
 

Fig. 3. Manual feedback control of a thermal system. 

 

 

 
Fig. 4: Automatic feedback control of a thermal system. 
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Functions of Automatic Control 
In any automatic control system, the four basic functions that occur are: 
 

1. Measurement 

2. Comparison 

3. Computation 

4. Correction 

 
In the water tank level control system in the example above, the level transmitter measures 
the level within the tank. The level transmitter sends a signal representing the tank level to 
the level control device, where it is compared to a desired tank level. The level control 
device, then computes how far to open the supply valve to correct any difference between 
actual and desired tank levels. 
 

 

 

 

 

Elements of Automatic Control 
 The three functional elements needed to perform the functions of an automatic control 
system are: 
 

1. A measurement element 

2. An error detection element 

3. A final control element 

 
Relationships between these elements and the functions they perform in an automatic control 
system are shown in Fig. 5. The measuring element performs the measuring function by 
sensing and evaluating the controlled variable. The error detection element first compares 
the value of the controlled variable to the desired value, and then signals an error if a 
deviation exists between the actual and desired values. The final control element responds to 
the error signal by correcting the manipulated variable of the process. 
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Fig. 5: Relationships between functions, and elements in an automatic control system 

 
An automatic controller is an error-sensitive, self-correcting device. It takes a signal from the 
process and feeds it back into the process. Therefore, closed-loop control is referred to as 
feedback control. 
 

Direct versus indirect controls 

It is desirable to measure and control directly the variable which indicates the state of 

the system or the quality of the product. This may present a difficult problem, since this 

quality may be difficult to measure. If this is the case, it becomes necessary to control a 

secondary variable (such as temperature and pressure). Although it may be difficult, we 

should always try to control the primary variable as directly as possible. 

 

Adaptive control systems 

The dynamic characteristics of most control systems are not constant because of 

possible variations in their parameters or environment. (e.g. variation in mass, or 

temperature … etc.). In such cases a satisfactory system must have the ability of adaptation. 

Adaptation implies the ability to self-modify or self-adjust in accordance with unpredictable 

changes in conditions of environment or structure. These are called “adaptive control 

systems”. 

 

Learning and intelligent control systems 

Many apparently open-loop control systems can be converted into closed-loop control 

system if a human operator is considered as a controller. (e.g. train driver). As the operator 

gains more experience, he or she will become a better controller. Recently learning and 

intelligent systems are being developed. 
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 Illustrative Examples of Control Systems 

 

 Pressure control systems; Fig. 6 

 

 
Fig. 6: Pressure control system. 

 

 

 Speed control systems; Fig. 7 

 

 
 

Fig. 7: Speed control system. 

 

 Computer control systems; Fig. 8 
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Fig. 8: Computer control system. 

Control Loop Diagrams 
A loop diagram is a "roadmap" that traces the process flow through the system and 

designates variables that can disrupt the balance of the system. A block diagram is a 
pictorial representation of the cause and effect relationship between the input and output of 
a physical system. A block diagram provides a mean to easily identify the functional 
relationships among the various components of a control system.  

The simplest form of a block diagram is the block and arrows diagram. It consists of a 
single block with one input and one output (Figure 9 (A)). The block normally contains the 
name of the element (Figure 9(B)) or the symbol of a mathematical operation (Figure 9(C)) to 
be performed on the input to obtain the desired output. Arrows identify the direction of 
information or signal flow. 

 
Fig. 9: Blocks, and arrows 
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Fig. 10: Summation points 

 

Although blocks are used to identify many types of mathematical operations, 

operations of addition and subtraction are represented by a circle, called a summing point. As 

shown in Figure 10, a summing point may have one or several inputs. Each input has its own 

appropriate plus or minus sign. A summing point has only one output and is equal to the 

algebraic sum of the inputs. 

A takeoff point is used to allow a signal to be used by more than one block or summing 
point (Figure 11). 
 

 
Fig. 11: Takeoff points 

 

Feedback Control system Block Diagram 
Figure 12 shows the basic elements of a feedback control system as represented by a 

block diagram. The functional relationships between these elements are easily seen. An 

important factor to remember is that the block diagram represents flow paths of control 

signals, but does not represent the flow of energy through the system or process. 
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Fig. 12: Feedback control system block diagram 

 
Figure 13 shows a typical application of a block diagram to identify the operation of a 
temperature control system for lubricating oil.  
 

 
Fig. 13: Lubrication oil cooler – the block diagram of the temperature control system 

 

Process Time Lag 
In the last example, the control of the lubrication oil temperature may initially seem 

easy. Apparently, the operator need only measure the lube oil temperature, compare the 
actual temperature to the desired (set point), compute the amount of error (if any), and 
adjust the temperature control valve to correct the error accordingly. However, processes 
have the characteristic of delaying and retarding changes in the values of the process 
variables. This characteristic greatly increases the difficulty of control. 

Process time lags are the general term that describes these process delays and 
retardations. Process time lags are caused by three properties of the process. They are: 
capacitance, resistance, and transportation time. 

Capacitance is the ability of a process to store energy. In Figure 13, for example, the 
walls of the tubes in the lube oil cooler, the cooling water, and the lube oil can store heat 
energy. This energy-storing property gives the ability to retard change. If the cooling water 
flow rate is increased, it will take a period of time for more energy to be removed from the 
lube oil to reduce its temperature. 

The resistance is part of the process that opposes the transfer of energy between 
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capacities. In Figure 13, the walls of the lube oil cooler oppose the transfer of heat from the 
lube oil inside the tubes to the cooling water outside the tubes. 

Transportation time is the time required to carry a change in a process variable from 
one point to another in the process. If the temperature of the lube oil (Figure 13) is lowered 
by increasing the cooling water flow rate, some time will elapse before the lube oil travels 
from the lube oil cooler to the temperature transmitter. If the transmitter is moved farther 
from the lube oil cooler, the transportation time will increase. This time lag is not just a 
slowing down or retardation of a change; it is an actual time delay during which no change 
occurs. 
 

Stability of Automatic Control System 
All control modes previously described can return a process variable to a steady value 

following a disturbance. This characteristic is called stability. Stability is the ability of a 
control loop to return a controlled variable to a steady, non-cyclic value, following a 
disturbance. Control loops can be either stable or unstable. Instability is caused by a 
combination of process time lags discussed earlier (i.e., capacitance, resistance, and 
transport time) and inherent time lag within a control system. This results in slow response to 
changes in the controlled variable. Consequently, the controlled variable will continuously 
cycle around the setpoint value.  
 

 
Fig. 14: Types of oscillations 

 
Oscillations describe this cyclic characteristic. There are three types of oscillations 

that can occur in a control loop. They are decreasing amplitude, constant amplitude, and 
increasing amplitude. Each is shown in Figure 14.  

Decreasing amplitude (Figure 14(A)). These oscillations decrease in amplitude and 
eventually stop with a control system that opposes the change in the controlled variable. This 
is the condition desired in an automatic control system. 

Constant amplitude (Figure 14(B)). The action of the controller sustains oscillations of 
the controlled variable. The controlled variable will never reach a stable condition; therefore, 
this condition is not desired. 

Increasing the amplitude (Figure 14(C)). The control system not only sustains 
oscillations, but also increases them. The control element has reached its full travel limits 
and causes the process to go out of control. 
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Two position Control Systems 
A two position controller is the simplest type of controller. A controller is a device that 

generates an output signal based on the input signal it receives. The input signal is actually an 
error signal, which is the difference between the measured variable and the desired value, or 
setpoint; Figure 15. 
 

 
Fig. 15: Process control system operation 

 
This input error signal represents the amount of deviation between where the process system 
is actually operating and where the process system is desired to be operating. The controller 
provides an output signal to the final control element, which adjusts the process system to 
reduce this deviation. The characteristic of this output signal is dependent on the type, or 
mode, of the controller. This part describes the simplest type of controller, which is the two-
position, or ON-OFF, mode controller. 

A two position controller is a device that has two operating conditions: completely on 
or completely off. Figure 16 shows the input to output, the characteristic waveform for a two 
position controller that switches from its "OFF" state to its "ON" state when the measured 
variable increases above the setpoint. Conversely, it switches from its "ON" state to its "OFF" 
state when the measured variable decreases below the setpoint. This device provides an 
output determined by whether the error signal is above or below the setpoint. The magnitude 
of the error signal is above or below the setpoint. The magnitude of the error signal past that 
point is of no concern to the controller. 
 

 
Fig. 16: Input-output relation of a two-position controller 
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Fig. 17: Example of a two-position controller – volume of water in a tank 

 
As an example of a system using a two-position controller is shown in Figure 17. The 

controlled process is the volume of water in the tank. The controlled variable is the level in 
the tank. It is measured by a level detector that sends information to the controller. The 
output of the controller is sent to the final control element, which is a solenoid valve, that 
controls the flow of water into the tank. As the water level decreases initially, a point is 
reached where the measured variable drops below the setpoint. This creates a positive error 
signal. The controller opens the final control element fully. Water is subsequently injected 
into the tank, and the water level rises. As soon as the water level rises above the setpoint, a 
negative error signal is developed. The negative error signal causes the controller to shut the 
final control element. This opening and closing of the final control element results in a cycling 
characteristic of the measured variable. 
 

Valve Actuators 
 

Actuators. By themselves, valves cannot control a process. Manual valves require an 
operator to position them to control a process variable. Valves that must be operated 
remotely and automatically require special devices to move them. These devices are called 
actuators. Actuators may be pneumatic, hydraulic, or electric solenoids or motors. 

Pneumatic Actuators. A simplified diagram of a pneumatic actuator is shown in Figure 
18. It is operated by a combination of force created by air and spring force. The actuator 
positions a control valve by transmitting its motion through the stem. 
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Fig. 18: Pneumatic actuator – Air to close, and spring to open 

A rubber diaphragm separates the actuator housing into two air chambers. The upper chamber 
receives supply air through an opening in the top of the housing. The bottom chamber 
contains a spring that forces the diaphragm against the mechanical stops in the upper 
chamber. Finally, a local indicator is connected to the stem to indicate the position of the 
valve. The position of the valve is controlled by varying supply air pressure in the upper 
chamber. This results in a varying force on the top of the diaphragm. Initially, with no supply 
air, the spring forces the diaphragm upward against the mechanical stops and holds the valve 
fully open. As supply air pressure is increased from zero, its force on top of the diaphragm 
begins to overcome the opposing force of the spring. This causes the diaphragm to move 
downward and the control valve to close. With increasing supply air pressure, the diaphragm 
will continue to move downward and compress the spring until the control valve is fully 
closed. Conversely, if supply air pressure is decreased, the spring will begin to force the 
diaphragm upward and open the control valve. Additionally, if supply pressure is held 
constant at some value between zero and maximum, the valve will position at an 
intermediate position. Therefore, the valve can be positioned anywhere between fully open 
and fully closed in response to changes in supply air pressure. 

A positioner is a device that regulates the supply air pressure to a pneumatic actuator. 
It does this by comparing the actuator’s demanded position with the control valve’s actual 
position. The demanded position is transmitted by a pneumatic or electrical control signal 
from a controller to the positioner. The pneumatic actuator in Figure 18 is shown in Figure 19 
with a controller and positioner added. 
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Fig. 19: Pneumatic actuator with controller and positioner  

 

The controller generates an output signal that represents the position demanded. This 
signal is sent to the positioner. Externally, the positioner consists of an input connection of 
the control signal, a supply air input connection, a supply air output connection, a supply air 
vent connection, and a feedback linkage. Internally, it contains an intricate network of 
electrical transducers, air lines, valves, linkages, and necessary adjustments. Other 
positioners may also provide controls for local valve positioning and gauges to indicate supply 
air pressure and control air pressure (for pneumatic controllers). From an operator’s 
viewpoint, a description of complex internal workings of a positioner is not needed. 
Therefore, this discussion will be limited to inputs to and outputs from the positioner. 

In Figure 19, the controller responds to a deviation of a controlled variable from set 
point and varies the control output signal accordingly to correct the deviation. The control 
output signal is sent to the positioner, which responds by increasing or decreasing the supply 
air to the actuator. Positioning of the actuator and control valve is fed back to the positioner 
through the feedback link. When the valve has reached the position demanded by the 
controller, the positioner stops the change in supply air pressure and holds the valve at the 
new position. This, in turn, corrects the controlled variable’s deviation from setpoint. 

For example, as the control signal increases, a valve inside the positioner admits more 
supply air to the actuator. As a result, the control valve moves downward. The linkage 
transmits the valve position information back to the positioner. This forms a small internal 
feedback loop for the actuator. When the valve reaches the position that correlates to the 
control signal, the linkage stops the supply air flow to the actuator. This causes the actuator 
to stop. On the other hand, if the control signal decreases, another valve inside the positioner 
opens and allows the supply air pressure to decrease by venting the supply air. This causes the 
valve to move upward and open. When the valve has opened to the proper position, the 
positioner stops venting air from the actuator and stops the movement of the control valve. 

An important safety feature is provided by the spring in an actuator. It can be designed 
to position a control valve in a safe position if a loss of supply air occurs. At a loss of supply 
air, the actuator in Figure 19 will fail open. This type of arrangement is referred to as "air-to-
close, spring-to-open" or simply "fail-open." Some valves fail in the closed position. This type 
of actuator is referred to as "air-to-open, spring-to-close" or "fail-closed." This "fail-safe" 
concept is an important consideration in critical facility designs. 
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Hydraulic Actuators. Pneumatic actuators are normally used to control processes 
requiring quick and accurate response, as they do not require a large amount of motive force. 
However, when a large amount of force is required to operate a valve (for example, the main 
steam system valves), hydraulic actuators are normally used. Although hydraulic actuators 
come in many designs, piston types are most common. 

A typical piston-type hydraulic actuator is shown in Figure 20. It consists of a cylinder, 

piston, spring, hydraulic supply and return line, and stem. The piston slides vertically inside 

the cylinder and separates the cylinder to two chambers. The upper chamber contains the 

spring and the lower chamber contains hydraulic oil. 

 

 
Fig. 20: Hydraulic actuator 

 

The hydraulic supply and return line is connected to the lower chamber and allows hydraulic 
fluid to flow to and from the lower chamber of the actuator. The stem transmits the motion 
of the piston to a valve. 

Initially, with no hydraulic fluid pressure, the spring force holds the valve in the closed 
position. As fluid enters the lower chamber, pressure in the chamber increases. This pressure 
results in a force on the bottom of the piston opposite to the force caused by the spring. 
When the hydraulic force is greater than the spring force, the piston begins to move upward, 
the spring compresses, and the valve begins to open. As the hydraulic pressure increases, the 
valve continues to open. Conversely, as hydraulic oil is drained from the cylinder, the 
hydraulic force becomes less than the spring force, the piston moves downward, and the valve 
closes. By regulating the amount of oil supplied or drained from the actuator, the valve can 
be positioned between fully open and fully closed. 

The principles of operation of a hydraulic actuator are like those of the pneumatic 
actuator. Each uses some motive force to overcome the spring force to move the valve. Also, 
hydraulic actuators can be designed to fail-open or fail-closed to provide a fail-safe feature. 
 

Electric Solenoid Actuators. A typical electric solenoid actuator is shown in Figure 21. 

It consists of a coil, armature, spring, and stem. The coil is connected to an external current 

supply. The spring rests on the armature to force it downward. The armature moves vertically 

inside the coil and transmits its motion through the stem to the valve. 
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Fig. 21: Electric solenoid actuator 

 

 
When current flows through the coil, a magnetic field forms around the coil. The 

magnetic field attracts the armature toward the center of the coil. As the armature moves 
upward, the spring collapses and the valve opens. When the circuit is opened and current 
stops flowing in the coil, the magnetic field collapses. This allows the spring to expand and 
shut the valve. 

A major advantage of solenoid actuators is their quick operation. Also, they are much 
easier to install than pneumatic or hydraulic actuators. However, solenoid actuators have two 
disadvantages. First, they have only two positions: fully open and fully closed. Second, they 
don’t produce much force, so they usually only operate relatively small valves. 
 

Electric Motor Actuators. Electric motor actuators vary widely in their design and 

applications. Some electric motor actuators are designed to operate in only two positions 

(fully open or fully closed). Other electric motors can be positioned between the two 

positions. A typical electric motor actuator is shown in Figure 22. Its major parts include an 

electric motor, clutch and gear box assembly, manual handwheel, and stem connected to a 

valve. 
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Fig. 22: Electric motor actuator 

 

The motor moves the stem through the gear assembly. The motor reverses its rotation 
to either open or close the valve. The clutch and clutch lever disconnects the electric motor 
from the gear assembly and allows the valve to be operated manually with the handwheel. 
Most electric motor actuators are equipped with limit switches, torque limiters, or both. Limit 
switches de-energize the electric motor when the valve has reached a specific position. 
Torque limiters de-energize the electric motor when the amount of turning force has reached 
a specified value. The turning force normally is greatest when the valve reaches the fully 
open or fully closed position. This feature can also prevent damage to the actuator or valve if 
the valve binds in an intermediate position. 
 

Design Principles of Control Systems. 

 

General requirements of a control system: 

 

 Any control system must be stable. This is a primary requirement. 

 In addition to absolute stability, a control system must have a reasonable relative 

stability. 

 This means fast response, with reasonable damping. 

 A control system must be capable of reducing errors to zero or small tolerable value. 

 

Note: 

 The requirement of reasonable relative stability and that of steady-state accuracy tend 

to be incompatible.  

 In designing control systems, we therefore find it necessary to make the most effective 

compromise between these two requirements.  

 

Basic problems in control system design. 

 In a practical control system, there are always some disturbances acting on the plant. 

 The controller must take into consideration any disturbances (internal or external) 

which will affect the output variables. 

 Performance indices must be defined to determine the optimal control signal. 

 The specification of the control signal over the operating time is called the control 

law. 

 The basic control problem is to determine the control law. 
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Design steps: 

 Analysis. By the analysis of a control system, we mean the investigation, under specific 

conditions, of the performance of the system whose mathematical model is known. 

Since any system is made up with components, analysis must start with a mathematical 

description of each component. Once a mathematical model of the complete system 

has been derived, the manner in which analysis is carried out is independent of 

whether the physical system is pneumatic, electrical, mechanical … etc. 

 Design. To design a system means to find one which accomplishes a given task. In 

general, the design procedure is not straightforward and will require trial-and-error 

method. 

 Synthesis. By synthesis, we mean finding by a direct procedure a system that will 

perform in a specified way. Usually such a procedure is entirely mathematical from the 

start to the end of the design process. Synthesis procedures are now available for linear 

networks and for optimal systems. 

 

 

Basic approach to control system design: 

 

 The basic approach to the design of a practical control system will necessarily involve 

trial-and-error procedures. 

 After the mathematical design has been completed, the control engineer simulates the 

model on a computer to test the behavior of the resulting system in response to various 

signals and disturbances. 

 The system may be required to be redesigned. 

 A satisfactory result will lead to the production of the prototype physical system. 

 
 
Relation with subsequent chapters 
The following three chapters will present the basic modeling, and theories of electric circuits. 
These models will be used in the later chapter for modeling control system, and studying their 
performances. It is important to know that some examples will method for modeling physical 
components for control system presentation. Some of these components are not presented in 
details in this course due to their advanced level; however, for control system modeling and 
analysis the basics of the physical components are only needed. In a later course (the 
mechatronics) more details about the physical structures and performances of advanced 
components will be given.  
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Objective  
 To understand the basic laws of Dc electric circuit  

 To study different techniques to analysis of DC electric circuit  

 

Introduction  

A circuit consists of electrical elements connected together. Engineers use electric circuits 

to solve problems that are important to modem society. In particular: 

1. Electric circuits are used in the generation, transmission, and consumption of electric 

power and energy. 

2. Electric circuits are used in the encoding, decoding, storage, retrieval, transmission, and 

processing of information. 

 

An electric circuit or electric network is an interconnection of electrical elements linked 

together in a closed path so that an electric current may flow continuously.  

Consider a simple circuit consisting of two well-known electrical elements, a battery and a 

resistor, as shown in Fig. 1. Each element is represented by the two-terminal element shown 

in Fig. 2. Elements are sometimes called devices, and terminals are sometimes called nodes. 

 

Fig. 1 A simple circuit 

 

 

Fig. 2 A general two-terminal electrical element with terminals a and b 

 
 

Chapter 2 

DC Electric Circuits 
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Charge may flow in an electric circuit. Current is the time rate of change of charge past a 

given point. Charge is the intrinsic property of matter responsible for electric phenomena. 

The current through a specified area is defined by the electric charge passing through the 

area per unit of time. Thus, q is defined as the charge expressed in coulombs (C). 

 

Charge is the quantity of electricity responsible for electric phenomena. Then we can express 

current as 

I = dq / dt         (1) 

  

The unit of current is the ampere (A); an ampere is 1 coulomb per second. Current is the time 

rate of flow of electric charge past a given point. 

 

 EX 1 :  

Find the current in an element when the charge entering the element is 

q = 12/ C 

where t is the time in seconds. 

 

Solution  

Recall that the unit of charge is coulombs, C. Then the current, from Eq. 1, is 

I = dq / dt   = 12 A 

where the unit of current is amperes, A. 

If the charge q is known, the current i is readily found using Eq. 1. Alternatively, if the 

current i is known, the charge q is readily calculated. Note that from Eq. 2, we obtain : 

q =      ∫     d x   (2)  

  

The basic variables in an electrical circuit are current and voltage. These variables 

describe the flow of charge through the elements of a circuit and the energy required to 

cause charge to flow. Figure 3 shows the notation we use to describe a voltage.  There are 

two parts to this notation: a value (perhaps represented by a variable name) and an assigned 

direction. The value of a voltage may be positive or negative. direction of a voltage is given 

by its polarities (+, - ) . As a matter of vocabulary, we say that a voltage exists across an 

element. Figure 3 shows that there are two ways to label the voltage across an element. The 

voltage vba is proportional to the work required to move a positive charge from terminal a to 

terminal b. On the other hand, the voltage vab is proportional to the work required to move a 

positive charge from terminal b to terminal a. We sometimes read vba as “the voltage at 
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terminal b with respect to terminal a.” Similarly, vab can be read as ‘the voltage at terminal a 

with respect to terminal b.” Alternatively, we sometimes say that vba is the voltage drop 

from terminal a to terminal b. The voltages vab and vba are similar but different. They have 

the same magnitude but different polarities. This means that  

vab = —vba (3)  

When considering vba, terminal b is called the “+ terminal” and terminal a is called the 

terminal.” On the other hand, when talking about vab, terminal a is called the      “ + 

terminal” and terminal b is called the “ V terminal.” The voltage across an element is the 

work (energy) required to move a unit positive charge from the “—“ terminal to the “+” 

terminal. The unit of voltage is the volt, V. 

The equation for the voltage across the element is 

V = dw/dq       (4) 

where v is voltage, w is energy (or work), and q is charge. A charge of 1 coulomb delivers an 

energy of 1 joule as it moves through a voltage of 1 volt. 

 

 

 

 

 

Fig. 3 Voltage across a circuit element 

The power and energy delivered to an element are of great importance. For example, the 

useful output of an electric lightbulb can be expressed in terms of power. We know that a 

300-watt bulb delivers more light than a 100-watt bulb. Power is the time rate of expending 

or absorbing energy. Thus, we have the equation 

P= dw / dt    (5) 

where p is power in watts, w is energy in joules, and / is time in seconds. The power 

associated with the charge flow through an element is 

p= dw /dt = dw /dq  * dq / dt = v * i  (6)  

 

 From Eq. 6, we see that the power is simply the product of the voltage across an element 

times the current through the element. The power has units of watts. 

Two circuit variables are assigned to each element of a circuit: a voltage and a current. 

Figure 4 shows that there are two different ways to arrange the direction of the current and 

the polarity of the voltage. In Figure 4-a, the current enters the circuit element at the + 

terminal of the voltage and exits at the - terminal. In contrast, in Figure 4-b, the current 

enters the circuit element at the - terminal of the voltage and exits at the + terminal. First,  

—Vba + 

+ Vab — 

a b 
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I     +        V       — 

a b 

—      V         + 

a b 

I      

 

consider Figure 4-a. When the current enters the circuit element at the + terminal of the 

voltage and exits at the - terminal, the voltage and current are said to “adhere to the passive 

convention.” In the passive convention, the voltage pushes a positive charge in the direction 

indicated by the current. Accordingly, the power calculated by multiplying the element 

voltage by the element current 

 

 

 

(a) 

 

 

 

 

(b) 

Fig. 4 (a) The passive convention is used for element voltage and current 

             (b) The passive convention is not used. 

 

p = vi (7) 

is the power absorbed by the element. (This power is also called “the power received by the 

element” and “the power dissipated by the element.” )  

Next, consider Figure 4-b. Here the passive convention has not been used. Instead, the 

current enters the circuit element at the - terminal of the voltage and exits at the + terminal. 

In this case, the voltage pushes a positive charge in the direction opposite to the direction 

indicated by the current. Accordingly, when the element voltage and current do not adhere to 

the passive convention, the power calculated by multiplying the element voltage by the 

element current is the power supplied by the element. The power absorbed by an element 

and the power supplied by that same element are 

related by  

power absorbed = —power supplied (8) 

 

 Ex. 2  

Let us consider the element shown in Figure 4-a when v = 4 V and i = 10 A. Find the power 

absorbed by the element and the energy absorbed over a 10-s interval. 

Solution 

The power absorbed by the element is 
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p = vi = 4 • 10 = 40 W 

The energy absorbed by the element is 

W = ∫      
  

 
 = 40 * 10 = 400 J 

 

 EX 3 :  

Fig. 5 shows four circuit elements identified by the letters A, B, C and D  

I. Which of the devices supply 12 W? 

II. Which of the devices absorb 12 W? 

III. What is the value of the power received by device B? 

IV. What is the value of the power delivered by device B? 

V. What is the value of the power delivered by device D? 

 

 

Fig. 5 

Answers: (a) B and C, (b) A and D, (c) -1 2 W, (d) 12 W, (e) -12 W 

In fact, the law of conservation of energy must be obeyed in any electric circuit. For this 

reason, the algebraic sum of power in a circuit, at any instant of time, must be zero. On other 

hand it can be represented as the algebraic sum of power absorbed in a circuit should equal 

the algebraic sum of power supplied in a circuit.  

 

Basic Laws  
If the current does not change with time, but remains constant, we call it a direct current 

(dc). A direct current (dc) is a current that remains constant with time. In the next parts of 

the chapter we will deal with DC circuits. 

 Circuit Elements   

An element is the basic building block of a circuit. An electric circuit is simply an 

interconnection of the elements. Circuit analysis is the process of determining voltages across 

(or the currents through) the elements of the circuit. There are two types of elements found 

in electric circuits: passive elements and active elements. An active element is capable of 

generating energy while a passive element is not. Examples of passive elements are resistors, 

capacitors, and inductors. Typical active elements include generators, batteries, and 
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operational amplifiers.  

The most important active elements are voltage or current sources that generally deliver 

power to the circuit connected to them. There are two kinds of sources: independent and 

dependent sources.  

An ideal independent source is an active element that provides a specified voltage or 

current that is completely independent of other circuit variables. In other words, an ideal 

independent voltage source delivers to the circuit whatever current is necessary to maintain 

its terminal voltage. Physical sources such as batteries and generators may be regarded as 

approximations to ideal voltage sources. Figure 6 shows the symbols for independent voltage 

sources. Notice that both symbols in Fig. 6 (a) and (b) can be used to represent a dc voltage 

source, but only the symbol in Fig. 6 (a) can be used for a time-varying voltage source. 

Similarly, an ideal independent current source is an active element that provides a specified 

current completely independent of the voltage across the source. That is, the current source 

delivers to the circuit whatever voltage is necessary to maintain the designated current. The 

symbol for an independent current source is displayed in Fig. 7, where the arrow indicates the 

direction of current i. 

 

Fig. 6 symbols for independent voltage sources (a) used for constant or time-varying 

voltage (b) used for constant voltage (dc) 

 

Fig. 7 symbol for independent current source  

 

Resistance is the physical property of an element or device that impedes the flow of 

current; it is represented by the symbol R. where A is the cross-sectional area, ρ the 

resistivity, L the length, and v the voltage across the wire element. Ohm, defined the 
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constant resistance R as 

 

R = ρ L / A             ohm   (9) 

Fig. 8 shows the Resistor and the circuit symbol for resistance 

 

Fig. 8 (a) Resistor (b) circuit symbol for resistance  

 

Ohm’s law 
Ohm's law, which related the voltage and current, was published in 1827 as : 

V = I * R                volt   (10) 

Ohm’s law states that the voltage v across a resistor is directly proportional to the current i 

flowing through the resistor. 

The unit of resistance R was named the ohm in honor of Ohm and is usually abbreviated by 

the Ω (capital omega) symbol, where 1 Ω= 1 V/A.   

When resistance value is approaching infinite it is called open circuit and when the resistance 

value is approaching zero is called short circuit as shown in Fig. 9 

 

Fig. 9 (a) short circuit (R=0)  (b) open circuit ( R= infinite ) 
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A useful quantity in circuit analysis is the reciprocal of resistance R, known as conductance 

and denoted by G. Conductance is the ability of an element to conduct electric current; it is 

measured in mho  or siemens (S). 

 Ex 4 :   

An electric iron draws 2 A at 120 V. Find its resistance. 

Solution: 

From Ohm’s law, 

R = v / I = 120 / 2 = 60 Ω 

 Ex 5  

In the circuit shown in Fig. 10, calculate the current i, the conductance G, and the power p. 

 

 

Fig. 10  

 

Solution:  

The voltage across the resistor is the same as the source voltage (30 V) because the resistor 

and the voltage source are connected to the same pair of terminals. Hence, the current is 

I = V/ R = 30 / (5 *103) = 6 mA 

The conductance is 

G = 1/ R = 1 / (5 * 103) = 0.2 mS 

We can calculate the power in various ways 

P= v * I = I2* R = V2 * G = 180 mW 

NODES, BRANCHES, AND LOOPS 

Since the elements of an electric circuit can be interconnected in several ways, we need 

to understand some basic concepts of network topology. To differentiate between a circuit 

and a network, we may regard a network as an interconnection of elements or devices, 

whereas a circuit is a network providing one or more closed paths. The convention, when 

addressing network topology, is to use the word network rather than circuit. We do this even 

though the words network and circuit mean the same thing when used in this context. In 

network topology, we study the properties relating to the placement of elements in the 

network and the geometric configuration of the network. Such elements include branches, 
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nodes, and loops.  A branch represents a single element such as a voltage source or a 

resistor. 

In other-words, a branch represents any two-terminal element. The circuit in Fig. 11 has 

five branches, namely, the 10-V voltage source, the 2-A current source, and the three 

resistors. 

 

 

Fig. 11 Nodes, branches and loops 

 

Fig. 12 The three nodes circuit of Fig. 11 is redrawn 

 

A node is the point of connection between two or more branches. 

A node is usually indicated by a dot in a circuit. If a short circuit (a connecting wire) 

connects two nodes, the two nodes constitute a single node. The circuit in Fig. 11 has three 

nodes a, b, and c. Notice that the three points that form node b are connected by perfectly 

conducting wires and therefore constitute a single point. The same is true of the four points 

forming node c. We demonstrate that the circuit in Fig. 11 has only three nodes by redrawing 

the circuit in Fig. 12. The two circuits in Figs. 11 and 12 are identical. However, for the sake 

of clarity, nodes b and c are spread out with perfect conductors as in Fig. 11.A loop is any 

closed path in a circuit.  A loop is a closed path formed by starting at a node, passing through 

a set of nodes, and returning to the starting node without passing through any node more than 

once. A loop is said to be independent if it contains abranch which is not in any other loop. 
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Independent loops or paths result in independent sets of equations. For example, the closed 

path abca containing the 2 Ω resistor in Fig. 12 is a loop. Another loop is the closed path bcb 

containing the 3 Ω resistor and the current source. Although one can identify six loops in Fig. 

12, only three of them are independent.  

As the next two definitions show, circuit topology is of great value to the study of voltages 

and currents in an electric circuit. Two or more elements are in series if they are cascaded or 

connected sequentially and consequently carry the same current. Two or more elements are 

in parallel if they are connected to the same two nodes and consequently have the same 

voltage across them. 

Elements are in series when they are chain-connected or connected sequentially, end to 

end. For example, two elements are in series if they share one common node and no other 

element is connected to that common node. Elements in parallel are connected to the same 

pair of terminals. Elements may be connected in a way that they are neither in series nor in 

parallel. In the circuit shown in Fig. 11, the voltage source and the 5 Ω resistor are in series 

because the same current will flow through them. The 2 Ω resistor, the 3 Ω resistor, and the 

current source are in parallel because they are connected to the same two nodes (b and c) 

and consequently have the same voltage across them. The 5 Ω and 2 Ω resistors are neither in 

series nor in parallel with each other. 

KIRCHHOFF’S LAWS 

Ohm’s law by itself is not sufficient to analyze circuits. However, when it is coupled with 

Kirchhoff’s two laws, we have a sufficient, powerful set of tools for analyzing a large variety 

of electric circuits. Kirchhoff’s laws were first introduced in 1847 by the German physicist 

Gustav Robert Kirchhoff (1824–1887). These laws are formally known as Kirchhoff’s current 

law (KCL) and Kirchhoff’s voltage law (KVL). Kirchhoff’s first law is based on the law of 

conservation of charge, which requires that the algebraic sum of charges within a system 

cannot change. Kirchhoff’s current law (KCL) states that the algebraic sum of currents 

entering a node (or a closed boundary) is zero. Mathematically, KCL implies that 

∑      

 

   

 

where N is the number of branches connected to the node and in is the nth current entering (or 

leaving) the node. By this law, currents entering a node may be regarded as positive, while 

currents leaving the node may be taken as negative or vice versa. Consider the node in Fig. 

13. Applying KCL gives 

i1 + (−i2) + i3 + i4 + (−i5) = 0      (11) 
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since currents i1, i3, and i4 are entering the node, while currents i2 and i5 are leaving it. By 

rearranging the terms, we get  

i1 + i3 + i4 = i2 + i5        (12) 

Equation (12) is an alternative form of KCL: 

The sum of the currents entering a node is equal to the sum of the currents leaving the node. 

 

Fig. 13 currents at a node illustrating KCL 

 

Fig. 14 Current sources in parallel (a) original circuit (b) equivalent circuit 

A simple application of KCL is combining current sources in parallel. The combined current is 

the algebraic sum of the current supplied by the individual sources. For example, the current 

sources shown in Fig. 14 (a) can be combined as in Fig. 14 (b). The combined or equivalent 

current source can be found by applying KCL to node a. 

IT + I2 = I1 + I3 
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IT = I1 − I2 + I3        (13) 

A circuit cannot contain two different currents, I1 and I2, in series, unless  I1 = I2; otherwise 

KCL will be violated. Kirchhoff’s second law is based on the principle of conservation of 

energy: 

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages around a closed 

path(or loop) is zero. Expressed mathematically, KVL states that 

∑      

 

   

 

Where m is the number of voltages in the loop (or the number of branches in the loop) and 

Vm is the mth voltage. To illustrate KVL, consider the circuit in Fig. 15. The sign on each 

voltage is the polarity of the terminal encountered first as we travel around the loop. We can 

start with any branch and go around the loop either clockwise or counterclockwise. Suppose 

we start with the voltage source and go clockwise around the loop as shown; then voltages 

would be −v1,+v2,+v3,−v4, and +v5, in that order. For example, as we reach branch 3, the 

positive terminal is met first; hence we have+v3. For branch 4, we reach the negative 

terminal first; hence, −v4. Thus, KVL yields  

−v1 + v2 + v3 − v4 + v5 = 0       (14) 

 Rearranging terms gives 

v2 + v3 + v5 = v1 + v4  

Which may be interpreted as:   

 Sum of voltage drops = Sum of voltage rises    (15) 

 

Fig. 15 single loop circuit 
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This is an alternative form of KVL. Notice that if we had traveled counterclockwise, the result 

would have been +v1, −v5, +v4, −v3, and −v2, which is the same as before except that the signs 

are reversed. Hence, Eqs. (14) and (15) remain the same. When voltage sources are 

connected in series, KVL can be applied to obtain the total voltage. The combined voltage is 

the algebraic sum of the voltages of the individual sources. For example, for the voltage 

sources shown in Fig. 16 (a), the combined or equivalent voltage source in Fig. 16 (b) is 

obtained by applying KVL. 

−Vab + V1 + V2 − V3 = 0 

or 

Vab = V1 + V2 − V3        (16) 

To avoid violating KVL, a circuit cannot contain two different voltages V1 and V2 in 

parallel unless V1 = V2. 

 

Fig. 16 Voltage sources in series (a) original circuit (b) equivalent circuit 

   

 EX   

For the circuit in Fig. 17 (a), find voltages v1 and v2. 
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Fig. 17  

Solution: 

To find v1 and v2, we apply Ohm’s law and Kirchhoff’s voltage law. Assume that current 

“i” flows through the loop as shown in Fig. 17 (b). From Ohm’s law, 

v1 = 2i, v2 = −3i        (17)  

Applying KVL around the loop gives 

−20 + v1 − v2 = 0        (18) 

Substituting Eq. (17) into Eq. (18), we obtain 

−20 + 2i + 3i =0 or 5i = 20  ⇒ i = 4 A 

Substituting i in Eq. (17) finally gives 

v1 = 8 V, v2 = −12 V 

 Ex  

Find v1 and v2 in the circuit of Fig. 18. 

 

Fig. 18  

Answer: 12 V, −6 V. 

 Ex: Find the currents and voltages in the circuit shown in Fig. 19 (a). 

 

Fig. 19 
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Solution: 

We apply Ohm’s law and Kirchhoff’s laws. By Ohm’s law, 

v1 = 8i1, v2 = 3i2, v3 = 6i3       (19) 

Since the voltage and current of each resistor are related by Ohm’s law as shown, we 

are really looking for three things: (v1, v2, v3) or (i1, i2, i3). At node a, KCL gives 

i1 − i2 − i3 = 0                    (20) 

Applying KVL to loop 1 as in Fig. 19 (b), 

−30 + v1 + v2 = 0 

We express this in terms of i1 and i2 as in Eq. (19) to obtain 

−30 + 8i1 + 3i2 = 0 

or 

i1 = (30 − 3i2) / 8             (21) 

Applying KVL to loop 2, 

−v2 + v3 = 0  ⇒ v3 = v2       (22) 

as expected since the two resistors are in parallel. We express v1 and v2 in terms of i1 

and i2 as in Eq. (19). Equation (22) becomes  

6i3 = 3i2  ⇒  i3 = i2 / 2        (23) 

Substituting Eqs. (21) and (23) into (20) gives 

(30 − 3i2)/8 − i2 − i2 /2 = 0   or i2 = 2 A.  

From the value of i2, we now use Eqs. (19) to (23) to obtain 

i1 = 3 A, i3 = 1 A, v1 = 24 V, v2 = 6 V, v3 = 6 V 

 Ex  

Find the currents and voltages in the circuit shown in Fig. 20. 
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Fig. 20  

Answer: v1 = 3 V, v2 = 2 V, v3 = 5 V, i1 = 1.5 A, i2 = 0.25 A, i3 =1.25 A. 

 

Series and Parallel Resistors 

The need to combine resistors in series or in parallel occurs so frequently that it warrants 

special attention. The process of combining the resistors is facilitated by combining two of 

them at a time. With this in mind, consider the single-loop circuit of Fig. 21. The two resistors 

are in series, since the same current i flows in both of them. Applying Ohm’s law to each of 

the resistors, we obtain  

v1 = iR1, v2 = iR2        (24) 

 

Fig. 21 A single loop circuit with two resistors in series  

 If we apply KVL to the loop (moving in the clockwise direction), we have 

-v +v1 +v2 = 0        (25)  

Combining Eqs. (24) and (25), we get 

v =v1 +v2 =i(R1 +R2)        (26)  

 



 

 

36 

or 

i=V/(R1 + R2)         (27)  

Notice that Eq. (26) can be written as  

v = iReq         (28)  

Implying that the two resistors can be replaced by an equivalent resistor;             that 

is,  

Req =R1 + R2         (29) 

Thus, Fig. 21 can be replaced by the equivalent circuit in Fig. 22. The two circuits in Figs. 21 

and 22 are equivalent because they exhibit the same voltage-current relationships at the 

terminals a-b. An equivalent circuit such as the one in Fig. 22 is useful in simplifying the 

analysis of a circuit. In general, the equivalent resistance of any number of resistors 

connected in series is the sum of the individual resistances. For N resistors in series then, 

Req = R1 + R2 +………………+ RN      (30) 

 

Fig. 22 Equivalent circuit  

To determine the voltage across each resistor in Fig. 21, we substitute 

Eq. (26) into Eq. (24) and obtain 

V1 = [V R1 / (R1 + R2)], V2 = [V R2 / (R1 + R2)]     (31) 

Notice that the source voltage v is divided among the resistors in direct proportion to their 

resistances; the larger the resistance, the larger the voltage drop. This is called the principle 

of voltage division, and the circuit in Fig. 21 is called a voltage divider. In general, if a 

voltage divider has N resistors in series with the source voltage v, (R1, R2,……….RN) , the nth 

resistor (Rn ) will have a voltage drop of 

Vn = V Rn / (R1 + R2 + ……+RN)            (32) 
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Parallel Resistors 

Consider the circuit in Fig. 23, where two resistors are connected in parallel and therefore 

have the same voltage across them. From Ohm’s law,  

v =i1R1 = i2R2 

i1 = v / R1, i2 =v/R2                (33) 

 

Fig. 23 Two resistor in parallel  

Applying KCL at node a gives the total current i as 

i = i1+ i2          (34) 

Substituting Eq. (33) into Eq. (34), we get 

 

i= V/R1 + V/R2 = V (1/R1 + 1R2) = V / Req    (35) 

 

Where Req is the equivalent resistance of the resistors in parallel: 

 

1 / Req = (1/R1 + 1/R2)      (36) 

 

We can extend the result in Eq. (36) to the general case of a circuit with N resistors in 

parallel. The equivalent resistance is 

 

1 / Req = (1/R1 + 1/R2 + ………….. + 1/RN)    (37) 
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This means that we may replace the circuit in Fig. 23 with that in Fig. 24. 

 

Fig. 24 Equivalent circuit  

 

Given the total current i entering node a in Fig. 23, how do we obtain current i1 and i2 ? and 

We know that the equivalent resistor has the same voltage, or 

V =i Req = 
      

     
        (38) 

Thus  

i1= 
    

     
      i2 = 

    

     
       (39) 

 

Which shows that the total current i is shared by the resistors in inverse proportion to their 

resistances. This is known as the principle of current division, and the circuit in Fig. 23 is 

known as a current divider. Notice that the larger current flows through the smaller 

resistance. 
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Ex: Find Req for the circuit in Figure 25  

Solution  

 

Fig. 25 

To get Req the 6 Ω and 3 Ω are in parallel 

 

Also 1 Ω and 5 Ω are in series, hence their equivalent resistance is  

 

Thus circuit in Figure 25 is reduced to Figure 26 (a),  

 

Fig. 26 
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We notice that the two 2 Ω resistors are in series so the equivalent resistance is  

 

This 4 Ω resistor is in parallel with the 6 Ω in Fig. 26 (a) their equivalent resistance is 

 

The circuit in Fig. 26 (a) is replaced with that in Fig. 26 (b). Hence the equivalent 
resistance is  

 

 

 EX : By combining the resistors in Fig. 27, find Req  

 

Fig. 27  

 

Answer: 6 Ω 

Ex: Calculate the equivalent resistance Rab in the circuit in Figure 28 

 

 

Fig. 28  
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The 6 Ω and 3 Ω are in parallel. Their combined resistance is  

 

Similarly, The 12 Ω and 4 Ω are in parallel. Hence  

 

Also The 1 Ω and 5 Ω are in series. Their equivalent resistance is 

 

Thus we can replace the circuit in Figure 28 by that in Figure 29 (a). In Figure 29 (a), the 6 Ω 

and 2 Ω are in parallel gives 2 Ω. This 2 Ω equivalent is series with 1 Ω to give combined 

resistance of 3 Ω. Thus we replace circuit in Figure 29 (a) by that in Figure 29 (b). In Figure 

29 (b)we combine the 2 Ω and 3 Ω are in parallel to get  
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Fig. 29  

This 1.2 Ω resistor is in series with the 10 Ω resistor, so that  

Rab = 10 + 1.2 = 11.2 Ω 

 

Ex: Find io and Vo in the circuit shown in Figure 30 (a). calculate the power dissipated in 

the 3 Ω resistor.  

Solution 

The 6 Ω and 3 Ω are in parallel. Their combined resistance is 

 

Thus our circuit reduces to that in Figure 30 (b). we can get Vo by ohm’s law : 

 

 

And hence Vo = 2i = 4 V. But Vo = 3 i0 = 4 V then i0= 4/3 A 
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Fig. 30  

The power dissipated in the 3 Ω resistor is  

Po = Vo io = 5.333 W 

 

Nodal Analysis 

Nodal analysis provides a general procedure for analyzing circuits using node voltages as the 

circuit variables. Choosing node voltages instead of element voltages as circuit variables is 

convenient and reduces the number of equations one must solve simultaneously. To simplify 

matters, we shall assume in this section that circuits do not contain voltage sources. Circuits 

that contain voltage sources will be analyzed in the next section. In nodal analysis, we are 

interested in finding the node voltages. Given a circuit with n nodes without voltage sources, 

the nodal analysis of the circuit involves taking the following three steps. 

Steps to Determine Node Voltages: 

1. Select a node as the reference node. Assign voltages v1, v2, …., vn to the remaining 

n-1 nodes. The voltages are referenced with respect to the reference node. 

2. Apply KCL to each of the n-1 non-reference nodes. Use Ohm’s law to express the 

branch currents in terms of node voltages. 

3. Solve the resulting simultaneous. 
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We shall now explain and apply these three steps. The first step in nodal analysis is selecting 

a node as the reference or datum node. The reference node is commonly called the ground 

since it is assumed to have zero potential. A reference node is indicated by any of the three 

symbols in Fig. 31. The type of ground in Fig. 31 (c) is called a chassis ground and is used in 

devices where the case, enclosure, or chassis acts as a reference point for all circuits. When 

the potential of the earth is used as reference, we use the earth ground in    Fig. 31 (a) or 

(b). We shall always use the symbol in Fig. 31 (b). Once we have selected a reference node, 

we assign voltage designations to non-reference nodes. Consider, for example, the circuit in 

Fig. 32 (a). Node 0 is the reference node (v=0). While nodes 1 and 2 are assigned voltages v1 

and v2 respectively. Keep in mind that the node voltages are defined with respect to the 

reference node. As illustrated in Fig. 32 (a), each node voltage is the voltage rise from the 

reference node to the corresponding non-reference node or simply the voltage of that node 

with respect to the reference node as the second step, we apply KCL to each non-reference 

node in the circuit. To avoid putting too much information on the same circuit, the circuit in 

Fig. 32 (a) is redrawn in  Fig. 32 (b), where we now add i1, i2 and i3 as the currents through 

resistors R1, R2 and R3 respectively. At node 1, applying KCL gives 

I1 = I2 + i1 + i2        (40) 

 

At Node 2, 

I2 +i2 = i3        (41) 

 

 

Fig. 31 Common symbols for reference node (a) common ground (b) ground (c) chassis 

ground 
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Fig. 32 Nodal analysis circuit  

 

We now apply Ohm’s law to express the unknown currents i1, i2 and i3 in terms of node 

voltages. The key idea to bear in mind is that, since resistance is a passive element, by the 

passive sign convention, current must always flow from a higher potential to a lower 

potential. Current flows from a higher potential to a lower potential in a resistor. We can 

express this principle as 

 

 

We obtain from Fig. 32(b), 

 

 



 

 

46 

Then, by substitution in Eqs. 40 and 41  

 

The third step in nodal analysis is to solve for the node voltages. If we apply KCL to n-1 non-

reference nodes, we obtain n-1 simultaneous equations. We solve Eqs. to obtain the node 

voltages v1 and v2 using any standard method, such as the substitution method, the 

elimination method, Cramer’s rule, or matrix inversion. To use either of the last two 

methods, one must cast the simultaneous equations in matrix form.  

Example: Calculate the node voltages in the circuit shown in Figure 33 (a) 

Solution  

Consider Figure 33 (b) where the circuit in Figure 33 (a) has been prepared for nodal analysis . 

At Node 1, Applying KCL and ohm’s law gives  

 

Multiplying each term by 4  

20 = V1 – V2 + 2 V1  

Or  

3 V1 – V2 = 20                 (42) 

At Node 2, Applying KCL and ohm’s law gives  

 

Multiplying each term by 12 results in  

60 + 2 V2 = 3V1 – 3V2 + 120   

Or  

-3 V1 + 5 V2 = 60         (43) 
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By solving equations 42 and 43  

V1 = 40/3 = 13.333 V    

V2 = 20 V  

 

  

Fig. 33 

 

 

 

 

 

 

 



 

 

48 

Example: Obtain the node voltages in the circuit of Fig. 34. 

 

Fig. 34 

Answer: v1 =-2 V, v2 =-14 V. 

 

Nodal Analysis with Voltage Sources 

We now consider how voltage sources affect nodal analysis. We use the circuit in Fig. 35 for 

illustration. Consider the following two possibilities. 

■ CASE 1 If a voltage source is connected between the reference node and a non-reference 

node, we simply set the voltage at the non-reference node equal to the voltage of the 

voltage source. In Fig. 35, for example, V1 = 10 volt Thus, our analysis is somewhat simplified 

by this knowledge of the voltage at this node. 

■ CASE 2 If the voltage source (dependent or independent) is connected between two non-

reference nodes, the two non-reference nodes 

 

Fig. 35 supernode circuit  
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form a generalized node or supernode; we apply both KCL and KVL to determine the node 

voltages. A supernode is formed by enclosing a (dependent or independent) voltage source 

connected between two non-reference nodes and any elements connected in parallel with it. 

In Fig. 36, nodes 2 and 3 form a supernode. (We could have more than two nodes forming a 

single supernode.  

We analyze a circuit with supernodes using the same three steps mentioned in the previous 

section except that the supernodes are treated differently. Why? Because an essential 

component of nodal analysis is applying KCL, which requires knowing the current through 

each element. There is no way of knowing the current through a voltage source in advance. 

However, KCL must be satisfied at a supernode like any other node. Hence, at the supernode 

in Fig. 35, 

 

To apply Kirchhoff’s voltage law to the supernode in Fig. 35, we redraw the circuit as shown 

in Fig. 36. Going around the loop in the clockwise direction gives 

 

By solving the previous equations, we obtain the node voltages. 

 

Fig. 36 
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Note the following properties of a supernode: 

1. The voltage source inside the supernode provides a constraint equation needed to 

solve for the node voltages. 

2. A supernode has no voltage of its own. 

3. A supernode requires the application of both KCL and KVL. 

Example: Find v and i in the circuit of Fig. 37. 

 

Fig. 37  

Answer: - 0.6 V, 4.2 A. 

 

Mesh Analysis 

Mesh analysis provides another general procedure for analyzing circuits, using mesh 

currents as the circuit variables. Using mesh currents instead of element currents as 

circuit variables is convenient and reduces the number of equations that must be solved 

simultaneously. Recall that a loop is a closed path with no node passed more than once. A 

mesh is a loop that does not contain any other loop within it. 

 

Fig. 38 A circuit with two meshes  

In Fig. 38, for example, paths abefa and bcdeb are meshes, but path abcdefa is not a 

mesh. The current through a mesh is known as mesh current. In mesh analysis, we are 
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interested in applying KVL to find the mesh currents in a given circuit. In this section, we 

will apply mesh analysis to planar circuits that do not contain current sources. In the next 

section, we will consider circuits with current sources. In the mesh analysis of a circuit 

with n meshes, we take the following three steps. Steps to Determine Mesh Currents: 

1. Assign mesh currents i1, i2,….. in to the n meshes. 

2. Apply KVL to each of the n meshes. Use Ohm’s law to express the voltages in terms of 

the mesh currents. 

3. Solve the resulting n simultaneous equations to get the mesh currents. 

To illustrate the steps, consider the circuit in Fig. 38. The first step requires that mesh 

currents i1 and i2 are assigned to meshes 1 and 2. Although a mesh current may be 

assigned to each mesh in an arbitrary direction, it is conventional to assume that each 

mesh current flows clockwise. As the second step, we apply KVL to each mesh. Applying 

KVL to mesh 1, we obtain 

    (44) 

For mesh 2, applying KVL gives  

  (45)  

Note in the Eq. 44, that the coefficient of i1 is the sum of the resistances in the first 

mesh, while the coefficient of i2 is the negative of the resistance common to meshes 1 

and 2. Now observe that the same is true in Eq. (45). This can serve as a shortcut way of 

writing the mesh equations. The third step is to solve for the mesh currents. Putting Eqs. 

(44) and (45) in matrix form yields 
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Which can be solved to obtain the mesh currents i1 and i2 . Notice that the branch 

currents are different from the mesh currents unless the mesh is isolated. To distinguish 

between the two types of currents, we use i for a mesh current and I for a branch 

current. The current elements I1, I2 and I3 are algebraic sums of the mesh currents. It is 

evident from Fig. 38 that 

 

Ex: Calculate the mesh currents i1 and i2  of the circuit of Fig. 40. 

 

Fig. 40  

Answer: i1 = 2 A, i2 = 0 A. 

Mesh Analysis with Current Sources 

Applying mesh analysis to circuits containing current sources (dependent or independent) 

may appear complicated. But it is actually much easier than what we encountered in the 

previous section, because the presence of the current sources reduces the number of 

equations. Consider the following two possible cases. 

■ CASE 1 When a current source exists only in one mesh: Consider the circuit in Fig. 41, for 

example. We set i2 = -5 A and write a mesh equation for the other mesh in the usual way; 

that is, 
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Fig. 41  

■ CASE 2 When a current source exists between two meshes: Consider the circuit in 

Fig. 42 (a), for example. We create a supermesh by excluding the current source 

and any elements connected in series with it, as shown in Fig. 42 (b). Thus, A 

supermesh results when two meshes have a (dependent or independent) current 

source in common. 

 

Fig. 42 (a) Two meshes having a current source in common (b) a supermesh 

  

As shown in Fig. 42 (b), we create a supermesh as the periphery of the two meshes and 

treat it differently. (If a circuit has two or more supermeshes that intersect, they should 

be combined to form a larger supermesh.) Why treat the supermesh differently? Because 

mesh analysis applies KVL—which requires that we know the voltage across each branch—

and we do not know the voltage across a current source in advance. However, a 

supermesh must satisfy KVL like any other mesh. Therefore, applying KVL to the 

supermesh in Fig. 42 (b) gives 
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We apply KCL to a node in the branch where the two meshes intersect. Applying KCL to 
node 0 in Fig. 42 (a) gives 
 
i2 = i1 + 6  
Then by solving the previous equations  
i1 = -3.2 A 
i2 = 2.8 A  

 

Note the following properties of a supermesh: 
1. The current source in the supermesh provides the constraint equation necessary to 
solve for the mesh currents. 
2. A supermesh has no current of its own. 
3. A supermesh requires the application of both KVL and KCL. 

 

EX: Use mesh analysis to determine i1, i2 and i3 in Fig. 43. 

 

Fig. 43  

Answer: i1 = 3.474 A, i2 = 0.4737 A, i3 = 1.1052 A. 

 

Superposition 

If a circuit has two or more independent sources, one way to determine the value of a 

specific variable (voltage or current) is to use nodal or mesh analysis. Another way is to 

determine the contribution of each independent source to the variable and then add 

them up. The latter approach is known as the superposition. The idea of superposition 
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rests on the linearity property. The superposition principle states that the voltage across 

(or current through) an element in a linear circuit is the algebraic sum of the voltages 

across (or currents through) that element due to each independent source acting alone. 

The principle of superposition helps us to analyze a linear circuit with more than one 

independent source by calculating the contribution of each independent source 

separately. However, to apply the superposition principle, we must keep two things in 

mind: 

1. We consider one independent source at a time while all other independent 

sources are turned off. This implies that we replace every voltage source by 0 V 

(or a short circuit), and every current source by 0 A (or an open circuit). This way 

we obtain a simpler and more manageable circuit. 

2. Dependent sources are left intact because they are controlled by circuit 

variables. With these in mind, we apply the superposition principle in three 

steps. 

Steps to Apply Superposition Principle: 

1. Turn off all independent sources except one source. Find the output (voltage or 

current) due to that active source using the techniques  

2. Repeat step 1 for each of the other independent sources. 

3. Find the total contribution by adding algebraically all the contributions due to 

the independent sources.  

Analyzing a circuit using superposition has one major disadvantage:  

it may very likely involve more work. If the circuit has three independent sources, 

we may have to analyze three simpler circuits each providing the contribution 

due to the respective individual source. 

However, superposition does help reduce a complex circuit to simpler circuits 

through replacement of voltage sources by short circuits and of current sources 

by open circuits. Keep in mind that superposition is based on linearity. For this 

reason, it is not applicable to the effect on power due to each source, because 

the power absorbed by a resistor depends on the square of the voltage or 

current. If the power value is needed, the current through (or voltage across) the 

element must be calculated first using superposition. 

 



 

 

56 

Example: Use the superposition theorem to find v in the circuit of Fig. 44. 

 

Fig. 44 

Solution: 

Since there are two sources, let 

V= v1 + v2  

Where v1 and v2 are the contributions due to the 6-V voltage source and the 3-A current 

source, respectively. To obtain v1 we set the current source to zero, as shown in Fig. 45 

(a). Applying KVL to the loop in Fig. 45 (a) gives 

 

Thus,  

V1 = 4 i1 = 2 V  

To get V2, we set the voltage source to zero as in Fig. 45 (b) using current division  

 

Hence,  

V2 = 4 i3 = 8 V  

And we find  

V =V1 + V 2 = 2 + 8 = 10 V  
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Fig. 45 

Example: Using the superposition theorem, find in the circuit of Fig. 46. 

 

Fig. 46  

Answer: 6 V. 

 

Thevenin’s Theorem 

It often occurs in practice that a particular element in a circuit is variable (usually called 

the load) while other elements are fixed. As a typical example, a household outlet 

terminal may be connected to different appliances constituting a variable load. Each time 

the variable element is changed, the entire circuit has to be analyzed all over again. To 

avoid this problem, Thevenin’s theorem provides a technique by which the fixed part of 

the circuit is replaced by an equivalent circuit. According to Thevenin’s theorem, the 

linear circuit in Fig. 47 (a) can be replaced by that in Fig. 47 (b). (The load in Fig. 47 may 

be a single resistor or another circuit.) The circuit to the left of the terminals a-b in Fig. 
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47 (b) is known as the Thevenin equivalent circuit; it was developed in 1883 by M. Leon 

Thevenin (1857–1926), a French telegraph engineer. 

Thevenin’s theorem states that a linear two-terminal circuit can be replaced by an 

equivalent circuit consisting of a voltage source VTh in series with a resistor RTh, where VTh 

is the open-circuit voltage at the terminals and RTh is the input or equivalent resistance at 

the terminals when the independent sources are turned off. 

 

 

Fig. 47 Replacing a linear two terminal circuit by its Thevenin equivalent  (a) 

original (b) the Thevenin equivalent 

 

Our major concern right now is how to find the Thevenin equivalent voltage Vth and 

resistance Rth . To do so, suppose the two circuits in Fig. 47 are equivalent. Two circuits 

are said to be equivalent if they have the same voltage-current relation at their 

terminals. Let us find out what will make the two circuits in Fig. 47 equivalent. If the 

terminals are made open-circuited (by removing the load), no current flows, so that the 

open-circuit voltage across the terminals in Fig. 47 (a) must be equal to the voltage 

source in Fig. 47 (b), since the two circuits are equivalent. Thus is the open-circuit 

voltage across the terminals as shown in Fig. 48 (a); that is, 

vth = voc  

Again, with the load disconnected and terminals open circuited, we turn off all 

independent sources. The input resistance (or equivalent resistance) of the dead circuit 
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at the terminals a-b in Fig. 47 (a) must be equal to Rth  in Fig. 47 (b) because the two 

circuits are equivalent. Thus, Rth is the input resistance at the terminals when the 

independent sources are turned off, as shown in Fig. 48(b); that is, 

Rth = Rin 

If the network has no dependent sources, we turn off all independent sources. Rth is the 

input resistance of the network looking between terminals a and b, as shown in Fig. 48 

(b). 

 

Fig. 48 Finding VTH and RTH 

EX  

Find the Thevenin equivalent circuit of the circuit shown in Fig. 49, to the left of the 

terminals a-b Then find the current through RL= 6 Ω, 16 Ω and 36 Ω 

 

Fig. 49  

Solution: 

We find Rth by turning off the 32-V voltage source (replacing it with a short circuit) and 

the 2-A current source (replacing it with an open circuit). The circuit becomes what is 

shown in Fig. 50 (a). 

Thus, 
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Fig. 50  

To find VTH, Applying mesh analysis to the two loops in Fig. 50 (b) we obtain   

-32 + 4i1 + 12 (i1-i2) = 0  

i2 = -2 A  

Then  

i1 = 0.5 A  

VTH = 12 (i1 –i2) = 30 V  

IL = 30 / (RL + RTH) = 30 / (RL + 4)  

When RL = 6,  

IL = 30 / 10 =3 A  

When RL = 16  

IL =30/20 = 1.5 A 

Finally at RL = 36,  

IL = 0.75 A 

 

 

Fig. 60 
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Note that in Fig. 61 the Maximum power is transferred to the load when the load 

resistance equals the Thevenin resistance as seen from the load              (RL= RTh). It can 

be proved by getting Pload as a function of RL from Fig. 62. Then differentiate the Pload 

equation with respect to RL. Finally, put the differentiation output equal to zero.  

 

 

 

 

Fig. 61 Power delivered to the load as function of RL 

 

Fig. 62 Circuit used for Maximum power transfer  
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EX : Using Thevenin’s theorem, find the equivalent circuit to the left of the terminals in 

the circuit of Fig. 63. Then find I. 

 

Fig. 63  

Answer: VTh = 9 V, RTh = 3 Ω, I = 2.25 A. 
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Objective  
 To understand the basic principles of Ac electric circuit.  

 To study different techniques to analysis of AC electric circuits.  

  

Overview 
Thus far our analysis has been limited for the most part to dc circuits: those circuits excited 
by constant or time-invariant sources. We have restricted the forcing function to dc sources 
for the sake of simplicity, for pedagogic reasons, and also for historic reasons. Historically, dc 
sources were the main means of providing electric power up until the late 1800s. At the end 
of that century, the battle of direct current versus alternating current began. Both had their 
advocates among the electrical engineers of the time. Because ac is more efficient and 
economical to transmit over long distances, ac systems ended up the winner. Thus, it is in 
keeping with the historical sequence of events that we considered dc sources first. We now 
begin the analysis of circuits in which the source voltage or current is time-varying. In this 
chapter, we are particularly interested in sinusoidally time-varying excitation, or simply, 
excitation by a sinusoid.  A sinusoid is a signal that has the form of the sine or cosine function. 
We begin with a basic discussion of sinusoids and phasors. We then introduce the concepts of 
impedance and admittance. The basic circuit laws, Kirchhoff’s and Ohm’s, introduced for dc 
circuits, will be applied to ac circuits. Consider the sinusoidal voltage 
V (t) = Vm sin ωt            (1) 
Where the sinusoid is shown in Fig. 1(a) as a function of its argument ω and in Fig. 1 as a 
function of time. It is evident that the sinusoid repeats itself every T seconds; thus, T is 
called the period of the sinusoid. From the two plots in Fig. 1, we observe that 
T = 2 π / ω          (2) 

 
Fig. 1 A sketch of Vm sin ωt as a function of (a) ωt (b) t 

 
The fact that V(t) repeats itself every T seconds is shown by replacing t by t+T in                   
Eq. (1). We get 

 
 

Chapter 3 

Single-phase AC electric circuits 
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That is V, has the same value at t+T as it does at t and v(t) is said to be periodic. As 
mentioned, the period T of the periodic function is the time of one complete cycle or the 
number of seconds per cycle. The reciprocal of this quantity is the number of cycles per 
second, known as the cyclic frequency f of the sinusoid. Thus, 
f= 1 / T            (3) 
From  Eqs. (2) and (3), it is clear that 
ω= 2 π f             (4) 
While ω is in radians per second (rad/s), f is in hertz (Hz). Let us now consider a more general 
expression for the sinusoid, 
V(t) = Vm sin(ωt + φ)        (5) 
Where (ωt + φ) is the argument and φ  is the phase. Both argument and phase can be in 
radians or degrees. Let us examine the two sinusoids shown in Fig. 2. 
 
V1(t) = Vm sin ωt      and  V2 (t) = Vm sin(ωt +φ )    (6) 
The starting point of in Fig. 2 occurs first in time. Therefore, we say that V2 leads V1 by φ or 
that V1 lags V2 by φ If we also say that V1 and V2 are out of phase. If then φ = 0,  V1 and V2  
are said to be in phase; they reach their minimum and maximum at exactly the same time. 
We can compare V1 and V2  in this manner because they operate at the same frequency; they 
do not need to have the same amplitude. 

 
Fig. 2 Two sinusoids with different phases  
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A sinusoid can be expressed in either sine or cosine form. When comparing two sinusoids, it is 
expedient to express both as either sine or cosine with positive amplitudes. Using the 
following relationships, we can transform a sinusoid from sine form to cosine form or vice 
versa. 
Sin (ωt ± 180°)    =   sin ωt 
cos (ωt ±180°)    =   cos ωt 

sin (ωt ±90°)      =    cos ωt 
cos (ωt ±90°)     =     sin ωt 
 
Ex :  Find the amplitude, phase, period, and frequency of the sinusoid 

 
Example: Calculate the phase angle between V1 =   10 cos (ωt + 50°) and                                    

V2 =    sin (ωt - 10°)  
 
Solution  

 
Thus  
The phase difference between V1 and V2 is 30° 
 

Phasors 
Sinusoids are easily expressed in terms of phasors, which are more convenient to work with 
than sine and cosine functions. A phasor is a complex number that represents the amplitude 
and phase of a sinusoid. Phasors provide a simple means of analyzing linear circuits excited by 
sinusoidal sources; solutions of such circuits would be intractable otherwise. The notion of 
solving Ac circuits using phasors was first introduced by Charles Steinmetz in 1893. Before we 
completely define phasors and apply them to circuit analysis, we need to be thoroughly 
familiar with complex numbers. 
A complex number z can be written in rectangular form as 
Z = x + j y         (7) 
Where j=√-1; x is the real part of z; y is the imaginary part of z. In this context, the variables 
x and y do not represent a location as in two-dimensional vector analysis but rather the real 
and imaginary parts of z in the complex plane. Nevertheless, we note that there are some 
resemblances between manipulating complex numbers and manipulating two-dimensional 
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vectors. The complex number z can also be written in polar or exponential form as 
z = rԼφ = re jφ 

Where r is the magnitude of z, and φ is the phase of z. We notice that z can be represented in 
three ways: 

 
The Idea of phasors representation is based on Euler’s identity. In general  

      = cos φ                  (8) 
Then  

cos φ   = Re (       )         (9a) 

sin φ    = Im (     )           (9b) 
Thus V(t) can be presented as   

V(t) = Vm cos (ωt + φ ) = Re ( Vm           )     (10) 
Or  

V(t) = Re ( Vm            )         (11) 
Thus  

V(t) = Re ( V        )         (12) 
Where 

V = Vm         = Vm  ⌊                   (13) 
V is thus the phasor representation of the sinusoid V(t). In other words, a phasor is a complex 
representation of the magnitude and phase of a sinusoid. Either Eq. (9a) or Eq. (9b) can be 
used to develop the phasor, but the standard convention is to use Eq. (9a). One way of 
looking at Eqs. (12) and (13) is to consider the plot of the sinor  Vejωt =Vm ej(ωt+φ) on the 
complex plane. As time increases, the sinor rotates on a circle of radius Vm at an angular 
velocity ω in the counterclockwise direction, as shown in Fig. 3(a). We may regard v(t) as the 
projection of the sinor Vejωt on the real axis, as shown in Fig. 3(b). The value of the sinor at 
time t=0  is the phasor V of the sinusoid  V(t). The sinor may be regarded as a rotating phasor. 
Thus, whenever a sinusoid is expressed as a phasor, the term ejωt is implicitly present. It is 
therefore important, when dealing with phasors, to keep in mind the frequency ω of the 
phasor; otherwise we can make serious mistakes. 

 
Fig. 3 Representation of Vejωt (a)sinor rotating counterclockwise (b) its projection on the real 

axis 
Equation (12) states that to obtain the sinusoid corresponding to a given phasor V, multiply 
the phasor by the time factor ejωt and take the real part. As a complex quantity, a phasor may 
be expressed in rectangular form, polar form, or exponential form. Since a phasor has 
magnitude and phase (“direction”), it behaves as a vector and is printed in boldface. 
Equations (10) through (12) reveal that to get the phasor corresponding to a sinusoid, we first 
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express the sinusoid in the cosine form so that the sinusoid can be written as the real part of 
a complex number. Then we take out the time factor ejωt and whatever is left is the phasor 
corresponding to the sinusoid. By suppressing the time factor, we transform the sinusoid from 
the time domain to the phasor domain. This transformation is summarized as follows: 

 
Table 1 Sinusoid phasor transformation 

 
This shows that the derivative of V(t) is transformed to the phasor domain as jωV 

 
Similarly, the integral of V(t) is transformed to the phasor domain as V/jω 

 
Example Transform these sinusoids to phasors  

 
Solution  
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Phasor Relationships for Circuit Elements 
Now that we know how to represent a voltage or current in the phasor or frequency domain, 
one may legitimately ask how we apply this to circuits involving the passive elements R, L, 
and C. What we need to do is to transform the voltage-current relationship from the time 
domain to the frequency domain for each element. Again, we will assume the passive sign 
convention. We begin with the resistor. If the current through a resistor R is i= Im cos(ωt+ φ) 
the voltage across it is given by Ohm’s law as 
V =I R  = R Im cos(ωt+ φ)  
The  phasor form of voltage and current  
V =R Im Լφ           (14) 
I  = Im Լφ             (15) 
showing that the voltage-current relation for the resistor in the phasor domain continues to 
be Ohm’s law, as in the time domain. Figure 4 illustrates the voltage-current relations of a 
resistor. We should note from Eqs. (14) and (15) that voltage and current are in phase, as 
illustrated in the phasor diagram in Fig. 5. 

 
Fig. 4 Voltage current relation for a resistor in (a) time domain (b) frequency domain 

 
Fig. 5 Phasor diagram for the resistor  

 
For the inductor L, assume the current through it is i= Im cos(ωt+ φ) The voltage across the 
inductor is 
V = L di/dt    =                     

=                      
Then  
V=               
But I = Im Լφ  
Thus  

V = j ω L I    where       = j  
Figure 6 illustrates the voltage-current relations of an inductor. 
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Fig. 6 voltage current relations for an inductor in the (a) time domain (b) frequency domain 

  
Showing that the voltage has a magnitude ω L Im of and a phase of φ + 90° The voltage and 
current are 90° out of phase. Specifically, the current lags the voltage by 90°. 
 For the capacitor C, assume the voltage across it is V = Vm cos (ω t + φ). The current through 
the capacitor is 
I= C dv/dt  
Similarly we can get that, 
I = j ω C V  
Then  
V = I / jωc 
Showing that the current and voltage are 90° out of phase. To be specific, the current leads 
the voltage by 90°. Figure 7 illustrates the voltage-current relations of a capacitor. 
 

 
Fig. 7 voltage current relations for a capacitor in the (a) time domain (b) frequency domain  

 
Table 2 summarized the voltage current relationships. 
 

Table 2 summary   

 
 



 

 

70 

Example: The voltage V = 12 cos (60t +45°) is applied to a 0.1 H inductor Find the current 
through the inductor. 
 
Solution  
V = jωLI  
ω = 60 rad /s  
V = 12 Լ45  
I = V / jωl = 12 Լ 45 / (j60*0.1) = 2 Լ-45 A 
iI(t) = 2 cos (60t -45°) A 
Example: The voltage V = 10 cos (100t +30°) is applied to a 50μF capacitor. Find the current 
through the capacitor. 
Answer: 50 cos (100t +120°) mA 
 

Impedance and Admittance 
The impedance Z of a circuit is the ratio of the phasor voltage V to the phasor current I, 
measured in ohms (Ω). In the preceding section, we obtained the voltage-current relations for 
the three passive elements as 

 
Or 

 
Then Ohm’s law in phasor form for any type of element   

 
Where Z is a frequency-dependent quantity known as impedance, measured in ohms. 
From the previous equations the impedance of resistor, inductor and capacitor are  ZR= R, ZL = 
jωL and Zc = -J/ωC respectively. At dc ω=o then ZL = 0 and Zc    

Generally  
Z = R + j X 
The impedance may also be expressed in polar form as  
Z = Z Լθ  
The admittance Y is the reciprocal of impedance, measured in siemens (S).  

  
Where G is called the conductance and B is called the susceptance. Admittance, conductance, 
and susceptance are all expressed in the unit of siemens (or mhos). Table 3 shows the 
summary. 
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Table 3 Impedance and admittance of passive elements 

 
Example: Find V(t) and i (t) in the circuit shown in Fig. 8  
Solution  
V = 10 cos 4t, ω = 4 
Vs = 10 Լ0° V  
Z= 5 + [ 1 /jωc ] = 5 + 1 / (j4*0.1)  = 5 – j 2.5 Ω 
I= Vs / Z = 1.6 + j 0.8 = 1.789 Լ26.57° A 
Voltage across the capacitor  
V = I Zc = I / jωc  = 4.47 Լ-63.43° V  
I(t) = 1.789 cos(4t + 26.57°)  A 
V(t) = 4.47 cos(4t – 63.43°) V 

 
Fig. 8  

 
Example: Refer to Fig. 9 Determine V (t),i(t) 

 
Fig. 9 

Answer: 8.944 sin(10t + 93.43° ) V , 4.472 sin(10t + 3.43° ) A 
 

Kirchhoff’s Laws in the Frequency Domain 
We cannot do circuit analysis in the frequency domain without Kirchhoff’s current and voltage 
laws. The Kirchhoff’s voltage and current law hold for phasors. For KVL, let V1, V2,……Vn  are 
the phasors form of voltages around a closed loop. 
Then 
V1+V2 + ……….Vn = 0 
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If we let I1, I2, ……..,In are the phasors form of current leaving or entering a closed surface 
then 
I1+I2+………….IN=0 
Consider the N series-connected impedances shown in Fig. 10. The same current “I” flows 
through the impedances. 

 

 
Fig.10 ” N” impedance in series  

 
Showing that the total or equivalent impedance of series-connected impedances is the sum of 
the individual impedances. This is similar to the series connection of resistances. If N =2 as 
shown in Fig. 11, the current through the impedances Is 

 

 
Fig. 11 Voltage division  

Which is the voltage-division relationship. In the same manner, we can obtain the equivalent 
impedance or admittance of the N parallel-connected impedances shown in Fig. 12. The 
voltage across each impedance is the same. Applying KCL at the top node, 

 
 



 

 

73 

 

 
Fig.12 ” N” impedance in series  

 

 
 
This indicates that the equivalent admittance of a parallel connection of admittances is the 
sum of the individual admittances. When as N=2 shown in Fig. 13, the currents in the 
impedances are 
 

 

 
Fig. 13 Current division  

 
 

Example: Find the input impedance in Fig. 14. Assume that the circuit operates                at ω 
= 50 rad /s.  
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Fig. 14 

Solution  

 
 
Example: Determine the input impedance of the circuit in Fig. 15 at ω = 10 rad/s. 

 
Fig. 15  

 
 
Answer; 129.52 – j 295 Ω 



 

 

75 

 
 
 
Example: calculate Vo in the circuit of Figure 16  

 
Fig. 16  

 
Answer: vo(t) = 14.142 cos (10t - 35°) V  
 

Analyze AC Circuits 
Analyzing Ac circuits usually requires three steps. Steps to Analyze AC Circuits: 
1. Transform the circuit to the phasor or frequency domain. 
2. Solve the problem using circuit techniques (nodal analysis, mesh analysis, superposition, 
etc.). 
3. Transform the resulting phasor to the time domain.  
Note, Step 1 is not necessary if the problem is specified in the frequency domain. In step 2, 
the analysis is performed in the same manner as dc circuit analysis except that complex 
numbers are involved. 
 

Nodal Analysis 
The basis of nodal analysis is Kirchhoff’s current law. Since KCL is valid for phasors, we can 
analyze ac circuits by nodal analysis. The following examples illustrate this. 
Example: compute V1 and V2 in the circuit of Figure 17 

 
Fig. 17 

Solution  
Applying KCL at supernode shown in Figure 18 (Nodes 1 and 2)  
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Fig. 18  

But a voltage source is connected between nodes 1 and 2 so that  

 
Then  

 
Thus  

 
Example: calculate V1 and V2 in the circuit shown in Figure 19  

 
Fig. 19 

 
Mesh Analysis 
Kirchhoff’s voltage law (KVL) forms the basis of mesh analysis. The validity of KVL for ac 
circuits was shown before and is illustrated in the following examples. Keep in mind that the 
very nature of using mesh analysis is that it is to be applied to planar circuits. 
Example Determine current in the circuit of Fig. 20 using mesh analysis.  
 
Solution: 
Applying KVL to mesh 1, we obtain 
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(8 + j10 -j2) I1 - (-j2) I2 - j10I3 =0     

 
Fig. 20  

 
For mesh 3, I3 = 5 A 
By sub by I3 in the previous equations  

 
Put the equations in matrix form  

 
From which we obtain  

 
The desired current is  

 
Example: Find Io in Figure 21 using mesh analysis  
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Fig. 21  

Answer: 3.582 Լ65.45° A 
 

Example: Find Vo in Figure 22 using mesh analysis  
 

 
Fig. 22 

Solution  
As shown in Figure 24, meshes 3 and 4 form a supermesh  
For mesh 1, KVL gives  

                – (-j2) I2 – 8 I3 = 0  
For mesh 2,  
I2 =      
For the supermesh  

                      + (-j5) I2 – 8 I1 = 0  
From current source between meshes 3 and 4  
I4 = I3 + 4  

 
Fig. 24  

By solving the previous equations we get  
 I1= 3.618 Լ 274.5° A 
Vo=             -      ) = - 7.2134 – j 6.568    V  
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Superposition Theorem 
Since ac circuits are linear, the superposition theorem applies to Ac circuits the same way it 
applies to dc circuits. The theorem becomes important if the circuit has sources operating at 
different frequencies. In this case, since the impedances depend on frequency, we must have 
a different frequency domain circuit for each frequency. The total response must be obtained 
by adding the individual responses in the time domain. It is incorrect to try to add the 
responses in the phasor or frequency domain. Why? Because the exponential factor ejωt is 
implicit in sinusoidal analysis, and that factor would change for every angular frequency ω. It 
would therefore not make sense to add responses at different frequencies in the phasor 
domain. Thus, when a circuit has sources operating at different frequencies, one must add 
the responses due to the individual frequencies in the time domain.  
Example: Find Vo in Figure 24 using the superposition theorem.   

 
Fig. 24 

Solution: 
Since the circuit operates at three different frequencies ω=0 for the dc voltage source), one 
way to obtain a solution is to use superposition, which breaks the problem into single-
frequency problems. So we let 
Vo = V1 + V2 + V3 
where  V1 is due to the 5-V dc voltage source, V2 is due to the 10 cos2t voltage source, and 
V3 is due to 2 sin 5t A  current source. To find V1, we set to zero all sources except the 5-V dc 
source. We recall that at steady state, a capacitor is an open circuit to dc while an inductor is 
a short circuit to dc. There is an alternative way of looking at this. Since ω =0, jωL =0, 1/jωc 
=    either way, the equivalent circuit is as shown in Fig. 25(a).  
By voltage division, 

 
To find V2, we set to zero both the 5-V source and 2 sin 5t current source and transform the 
circuit to the frequency domain 

 
Equivalent circuit is shown in Fig. 25(b).  
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Fig. 25 
By voltage division, 

 
In time domain  

 
To obtain V3 we set the voltage sources to zero and transform what is left to the frequency 
domain 

 
Equivalent circuit is shown in Fig. 25(c) 

 
By current divider  

 
In time domain  

 
Thus  

 
Thevenin Equivalent Circuit 
Thevenin’s theorem is applied to ac circuits in the same way as they are to dc circuits. The 
only additional effort arises from the need to manipulate complex numbers. The frequency 
domain version of a Thevenin equivalent circuit is depicted in Fig. 26, where a linear circuit is 
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replaced by a voltage source in series with an impedance. 

 
Fig. 26 Thevenin equivalent  

Example: Obtain the Thevenin equivalent at terminals a-b of the circuit in Figure 27  
 

 
Fig. 27 

Solution  
We find ZTH by setting the voltage source to zero. As shown in Fig. 28(a), the 8 Ω  resistance is 
now in parallel with the – j 6 reactance, so that their combination gives 

 
Similarly, the 4 Ω resistance is in parallel with the j12 reactance, and 
their combination gives 

 
The Thevenin impedance is the series combination of Z1 and Z2  that is, 

 
To find VTH consider the circuit in Fig. 28(b). Currents I1 and I2 are obtained as 

 
Applying KVL around loop bcdeab in Fig. 28(b) gives 
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Fig. 28 
Example: Find the Thevenin equivalent at terminals a-b of the circuit in Fig. 29 

 
Fig. 29   

 
 

 

  
  



 

 

83 

 

 

Objective  
 Overview of the Power electronic control of electric circuits   

 Understand the basics of Single-phase uncontrolled rectification circuits  

 Understand the basics of Single-phase controlled rectification circuits  

 Understand the basics of Single-phase inversion circuits 

Power Electronics Backgrounds 
The first electronics revolution began in 1948 with the invention of the silicon transistor at 

Bell Telephone Laboratories by Bardeen, Bratain, and Schockley. Most of today’s advanced 

electronic technologies are traceable to that invention, and modern microelectronics has 

evolved over the years from these silicon semiconductors. The second electronics revolution 

began with the development of a commercial thyristor by the General Electric Company in 

1958. That was the beginning of a new era of power electronics. Since then, many different 

types of power semiconductor devices and conversion techniques have been introduced. 

The demand for energy, particularly in electrical forms, is ever-increasing in order to 

improve the standard of living. Power electronics helps with the efficient use of electricity, 

thereby reducing power consumption. Semiconductor devices are used as switches for power 

conversion or processing, as are solid state electronics for efficient control of the amount of 

power and energy flow. Higher efficiency and lower losses are sought for devices used in a 

range of applications, from microwave ovens to high-voltage dc transmission. New devices and 

power electronic systems are now evolving for even more effective control of power and 

energy. Power electronics has already found an important place in modern technology and has 

revolutionized control of power and energy. As the voltage and current ratings and switching 

characteristics of power semiconductor devices keep improving, the range of applications 

continue to expand in areas, such as lamp controls, power supplies to motion control, factory 

automation, transportation, energy storage, multi-megawatt industrial drives, and electric 

power transmission and distribution. The greater efficiency and tighter control features of 

 
 

Chapter 4 

Power electronic switching circuits 
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power electronics are becoming attractive for applications in motion control by replacing the 

earlier electromechanical and electronic systems. Applications in power transmission and 

renewable energy include high-voltage dc (VHDC) converter stations, flexible ac transmission 

system (FACTS), static var compensators, and energy storage. In power distribution, these 

include dc-to-ac conversion, dynamic filters, frequency conversion, and custom power 

system. Almost all new electrical or electromechanical equipments, from household air 

conditioners and computer power supplies to industrial motor controls, contain power 

electronic circuits and/or systems. In order to keep up, working engineers involved in control 

and conversion of power and energy into applications ranging from several hundred voltages 

at a fraction of an ampere for display devices to about 10,000 V at high-voltage dc 

transmission should have a working knowledge of power electronics. 

DEFINITION Power electronics involves the study of electronic circuits intended to control 

the flow of electrical energy. These circuits handle power flow at levels much higher than the 

individual device ratings. Rectifiers are probably the most familiar examples of circuits that 

meet this definition. Inverters (a general term for dc–ac converters) and dc–dc converters for 

power supplies are also common applications. As shown in Fig. 1, power electronics 

represents a median point at which the topics of energy systems, electronics, and control 

converge and combine. Any useful circuit design for an energy application must address issues 

of both devices and control, as well as of the energy itself. Among the unique aspects of 

power electronics are its emphasis on large semiconductor devices, the application of 

magnetic devices for energy storage, special control methods that must be applied to 

nonlinear systems, and its fundamental place as a central component of today’s energy 

systems and  alternative resources. In any study of electrical engineering, power electronics 

must be placed on a level with digital, analog, and radio-frequency electronics to reflect the 

distinctive design methods and unique challenges. 
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Fig. 1 Control, energy and power electronics are interrelated 

The history of power electronics has been closely allied with advances in electronic 

devices that provide the capability to handle high power levels. Since about 1990, devices 

have become so capable that a transition from a “device-driven” field to an “applications-

driven” field continues. This transition has been based on two factors: (1) advanced 

semiconductors with suitable power ratings exist for almost every application of wide 

interest, and (2) the general push toward miniaturization is bringing advanced power 

electronics into a growing variety of products. Although the devices continue to improve, 

their development now tends to follow innovative applications. 

Key Characteristics 
All power electronic circuits manage the flow of electrical energy between an electrical 

source and a load. The parts in a circuit must direct electrical flows, not impede them. A 

general power conversion system is shown in Fig. 2. The function of the power converter in 

the middle is to control the energy flow between a source and a load. For our purposes, the 

power converter will be implemented with a power electronic circuit. Because a power 

converter appears between a source and a load, any energy used within the converter is lost 

to the overall system. A crucial point emerges: to build a power converter, we should 

consider only lossless components. A realistic converter design must approach 100% 

efficiency. A power converter connected between a source and a load also affects system 

reliability. If the energy source is perfectly reliable (it is available all the time), then a failure 

in the converter affects the user (the load) just as if the energy source had failed. An 

unreliable power converter creates an unreliable system. To put this in perspective, consider 

that a typical American household loses electric power only a few minutes a year. Energy is 

available 99.999% of the time. A converter must be better than this to prevent system 
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degradation. An ideal converter implementation will not suffer any failures over its 

application lifetime. Extreme high reliability can be a more difficult objective than high 

efficiency. 

 

Fig. 2 General system for electric power conversion 

Switch principles 
A circuit element as simple as a light switch reminds us that the extreme requirements in 

power electronics are not especially novel. Ideally, when a switch is on, it has zero voltage 

drop and will carry any current imposed on it. When a switch is off, it blocks the flow of 

current regardless of the voltage across it. The device power, the product of the switch 

voltage and current, is identically zero at all times. A switch therefore controls energy flow 

with no loss. In addition, reliability is also high. Household light switches perform over 

decades of use and perhaps 100,000 operations. Unfortunately, a mechanical light switch does 

not meet all practical needs. A switch in a power supply may function 100,000 times each 

second. Even the best mechanical switch will not last beyond a few million cycles. 

Semiconductor switches (without this limitation) are the devices of choice in power 

converters. A circuit built from ideal switches will be lossless. As a result, switches are the 

main components of power converters, and many people equate power electronics with the 

study of switching power converters. Magnetic transformers and lossless storage elements 

such as capacitors and inductors are also valid components for use in power converters. The 

complete concept, shown in Fig. 3, illustrates a power electronic system. Such a system 

consists of an electrical energy source, an electrical load, a power electronic circuit, and a 

control function. The power electronic circuit contains switches, lossless energy storage 

elements, and magnetic transformers. The controls take information from the source, the 

load, and the designer, and then determine how the switches operate to achieve the desired 

conversion. The controls are built up with low-power analog and digital electronics. 
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Fig. 3 A basic power electronic system 

 

Controlled rectification circuit  
In this section, the uncontrolled rectification circuit will be studied. It mainly consists of 

Diodes act as switches to convert from AC to DC.  

 

Diode as a Switch 
Among all the static switching devices used in power electronics (PE), the power diode is 

perhaps the simplest. Its circuit symbol is shown in Fig. 4. It is a two terminal device, and 

terminal A is known as the anode whereas terminal K is known as the cathode. If terminal A 

experiences a higher potential compared to terminal K, the device is said to be forward 

biased and a current called forward current (IF ) will flow through the device in the direction 

as shown. This causes a small voltage drop across the device (<1V), which in ideal condition is 

usually ignored. On the contrary, when a diode is reverse biased, it does not conduct and a 

practical diode does experience a small current flowing in the reverse direction called the 

leakage current. Both the forward voltage drop and the leakage current are ignored in an 

ideal diode. Usually in PE applications a diode is considered to be an ideal static switch. The 

characteristics of a practical diode show a departure from the ideals of zero forward and 

infinite reverse impedance, as shown in Fig. 5-a. In the forward direction, a potential barrier 

associated with the distribution of charges in the vicinity of the junction, together with other 

effects, leads to a voltage drop. This, in the case of silicon, is in the range of 1V for currents 

in the normal range. In reverse, within the normal operating range of voltage, a very small 

current flow which is largely independent of the voltage. For practical purposes, the static 

characteristic is often represented by Fig. 5-b. In the Figure, the forward characteristic is 

expressed as a threshold voltage Vo and a linear incremental or slope resistance, r.  
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The reverse characteristic remains the same over the range of possible leakage currents 

irrespective of voltage within the normal working range. 

 

 

Fig. 4 power diode (a) symbol; (b) and (c) types of packing 

 

Fig. 5-a Typical static c/c’s of a power diode 

 

Fig. 5-b Practical representation of the static c/c’s of a power diode 

 

Properties of PN Junction 
From the forward and reverse biased condition characteristics, one can notice that when 

the diode is forward biased, current rises rapidly as the voltage is increased. Current in the 

reverse biased region is significantly small until the breakdown voltage of the diode is 

reached. Once the applied voltage is over this limit, the current will increase rapidly to a very 
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high value limited only by an external resistance. 

DC diode parameters:   
The most important parameters are the followings: 

• Forward voltage, VF is the voltage drop of a diode across A and K at a defined current 

level when it is forward biased. 

• Breakdown voltage, VB is the voltage drop across the diode at a defined current level 

when it is beyond reverse biased level. This is popularly known as avalanche. 

• Reverse current IR is the current at a particular voltage, which is below the breakdown 

voltage. 

Single-phase uncontrolled rectification circuits 
Electrical energy sources take the form of dc voltage sources at various values, sinusoidal 

ac sources, polyphase sources, among others. A power electronic circuit might be asked to 

transfer energy between two different dc voltage levels, between an AC source and a dc load, 

or between sources at different frequencies. It might be used to adjust an output voltage or 

power level, drive a nonlinear load, or control a load current. In this section, a few basic 

converter arrangements are introduced, and energy conservation provides a tool for analysis. 

EXAMPLE: Consider the circuit shown in Fig. 6. It contains an AC source, a switch, and a 

resistive load. It is a simple but complete power electronic system. 

 

Fig. 6 A simple power electronic system 

Let us assign a (somewhat arbitrary) control scheme to the switch. What if the switch is 

turned on whenever Vac >0, and turned off otherwise? The input and output voltage 

waveforms are shown in Fig. 7. The input has a time average of 0, and root- mean-square 

(RMS) value equal to Vpeak/√2, where Vpeak is the maximum value of Vac. The output has a 

nonzero average value given by 

Vout (t) = (1/2π ) ( ∫              
   

    
 +  ∫      

    

   
 )  

        = Vpeak / π = 0.3183 Vpeak      (1) 
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Fig. 7 Input and output waveforms for the Example 

and an RMS value equal to Vpeak/2. Since the output has nonzero dc voltage content, the 

circuit can be used as an ac–dc converter. To make it more useful, a low-pass filter would be 

added between the output and the load to smooth out the ac portion. This filters needs to be 

lossless, and will be constructed from only inductors and capacitors. The circuit in the 

previous Example acts as a half-wave uncontrolled rectifier with a resistive load. With the 

hypothesized switch action, a diode (uncontrolled switch) can substitute for the ideal switch. 

The example confirms that a simple switching circuit can perform power conversion functions. 

But note that a diode is not, in general, the same as an ideal switch. A diode places 

restrictions on the current direction, whereas a true switch would not. An ideal switch allows 

control over whether it is on or off, whereas a diode’s operation is constrained by circuit 

variables. Consider a second half-wave circuit, now with a series L–R load, shown in Fig. 8. 

EXAMPLE: A series diode L–R circuit has ac voltage source input. This circuit operates much 

differently than the half-wave rectifier with resistive load. A diode will be on if forward-

biased, and off if reverse-biased. In this circuit, when the diode is off, the current will be 

zero. 

 

Fig. 8 Half wave rectifier with L-R load 

Whenever the diode is on, the circuit is the ac source with L–R load. Let the ac voltage be 

V0 cos(ωt). From Kirchhoff’s Voltage Law (KVL), 

V0 cos(ωt) = L di/dt + Ri         (2) 
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Let us assume that the diode is initially off (this assumption is arbitrary, and we will check 

it as the example is solved). If the diode is off, the diode current is i =0, and the voltage 

across the diode will be Vac. The diode will become forward-biased when Vac becomes 

positive. The diode will turn on when the input voltage makes a zero-crossing in the positive 

direction. This allows us to establish initial conditions for the circuit: i(t0) = 0, t0 = −π/(2ω). 

The differential equation can be solved in a conventional way to give    

i(t) = V0 [
  

         * exp ( 
  

 
    

 

   
      

 

                    
  

                     (3) 

Where τ is the time constant L/R.  

 

 

Fig. 9 Input and output waveforms for the previous example 

What about when the diode is turned off? The first guess might be that the diode turns off 

when the voltage becomes negative, which is not correct. From the solution, we can note 

that the current is not zero when the voltage first becomes negative. If the switch attempts 

to turn off, it must instantly drop the inductor current to zero. The derivative of current in 

the inductor, di/dt, would become negative infinite. The inductor voltage L(di/dt) similarly 

becomes negative infinite, and the devices are destroyed. What really happens is that the 

falling current allows the inductor to maintain forward bias on the diode. The diode will turn 

off only when the current reaches zero. A diode has definite properties that determine the 

circuit action, and both the voltage and current are relevant. Figure 1.7 shows the input and 

output waveforms for a time constant τ equal to about one-third of the ac waveform period. 

Full bridge rectifier 
In rectification four diodes can be used to fully rectify an Ac signal as shown in  Fig. 10. Apart 

from other rectifier circuits, this topology does not require an input transformer. However, 

they are used for isolation and protection. The direction of the current is decided by two 
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diodes conducting at any given time. The direction of the current through the load is always 

the same. This rectifier topology is known as the full bridge rectifier. 

 

Fig. 10 Full bridge rectifier and its output voltage 

The average rectifier output voltage: 

Vdc = 2Vm/π                  (4) 

where Vm is the peak input voltage.  

The rms rectifier output voltage: 

Vrms = Vm / √2          (5) 

Single-phase controlled rectification circuits 
Thyristors are usually three-terminal devices that have four layers of alternating p-type 

and n-type material (i.e. three p–n junctions) comprising its main power handling section. The 

control terminal of the thyristor, called the gate (G) electrode, may be connected to an 

integrated and complex structure as a part of the device. The other two terminals, called the 

anode (A) and cathode (K), handle the large applied potentials (often of both polarities) and 

conduct the major current through the thyristor. The anode and cathode terminals are 

connected in series with the load to which power is to be controlled. Thyristors are used to 

approximate ideal closed (no voltage drop between anode and cathode) or open (no anode 

current flow) switches for control of power flow in a circuit. This differs from low-level digital 

switching circuits that are designed to deliver two distinct small voltage levels while 

conducting small currents (ideally zero). Thyristor circuits must have the capability of 

delivering large currents and be able to withstand large externally applied voltages. All 

thyristor types are controllable in switching from a forward-blocking state (positive potential 

applied to the anode with respect to the cathode, with correspondingly little anode current 

flow) into a forward-conduction state (large forward anode current flowing, with a small 

anode–cathode potential drop). Most thyristors have the characteristic that after switching 

from a forward-blocking state into the forward-conduction state, the gate signal can be 

removed and the thyristor will remain in its forward-conduction mode. This property is 

termed “latching” and is an important distinction between thyristors and other types of 
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power electronic devices. Some thyristors are also controllable in switching from forward-

conduction back to a forward-blocking state. The particular design of a thyristor will 

determine its controllability and often its application. Thyristors are typically used at the 

highest energy levels in power conditioning circuits because they are designed to handle the 

largest currents and voltages of any device technology (systems approximately with voltages 

above 1 kV or currents above 100 A).  

A thyristor used in some ac power circuits (50 or 60 Hz in commercial utilities or 400 Hz in 

aircraft) to control ac power flow can be made to optimize internal power loss at the expense 

of switching speed. These thyristors are called phase-control devices, because they are 

generally turned from a forward blocking into a forward-conducting state at some specified 

phase angle of the applied sinusoidal anode–cathode voltage waveform. A second class of 

thyristors is used in association with dc sources or in converting ac power at one amplitude 

and frequency into ac power at another amplitude and frequency, and must generally switch 

on and off relatively quickly. A typical application for the second class of thyristors is in 

converting a dc voltage or current into an Ac voltage or current. A circuit that performs this 

operation is often called an inverter, and the associated thyristors used are referred to as 

inverter thyristors. Figure 11 shows a conceptual view of a typical thyristor with the three p–n 

junctions and the external electrodes labeled. Also shown in the Figure is the thyristor circuit 

symbol used in electrical schematics. Figure 12 shows typical thyristor stud-mount and press-

pack packages. 

 

Fig 11 Simple cross section of a thyristor and its electrical symbol 
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Figure 12 typical thyristor stud-mount and press-pack packages. 

Applications 
The most important application of thyristors is for line frequency phase-controlled 

rectifiers. This family includes several topologies, of which one of the most important is used 

to construct HVDC transmission systems. A single-phase controlled rectifier is shown in Fig. 

13. The use of thyristors instead of diodes allows the average output voltage to be controlled 

by appropriate gating of the thyristors. If the gate signals to the thyristors were continuously 

applied, the thyristors in Fig. 6.13 would behave as diodes. If no gate currents are supplied 

they behave as open circuits. Gate current can be applied any time (phase delay) after the 

forward voltage becomes positive. Using this phase-control feature, it is possible to produce 

an average dc output voltage less than the average output voltage obtained from an 

uncontrolled diode rectifier. 

 

Fig. 13 Single phase controlled rectifier circuit 
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Single-phase controlled Half-wave Rectifier 
The single-phase half-wave rectifier uses a single thyristor to control the load voltage as 

shown in Fig. 14. The thyristor will conduct, on-state, when the voltage vT is positive and a 

firing current pulse iG is applied to the gate terminal. The control of the load voltage is 

performed by delaying the firing pulse by an angle α. The firing angle α is measured from the 

position where a diode would naturally conduct. In case of Fig. 14, the angle α is measured 

from the zero-crossing point of the supply voltage vs. The load in Fig. 14 is resistive and 

therefore the current id has the same waveform of the load voltage. The thyristor goes to the 

non-conducting condition, off-state, when the load voltage, and consequently the current, 

reaches a negative value. The load average voltage is given by 

 

Vdα = 
 

  
∫              

 

 
      

    

  
                (6) 

Where Vmax is the supply peak voltage. Hence, it can be seen from Eq. (6) that changing the 

firing angle α controls both the load average voltage and the amount of transferred power. 

Figure 15-a shows the rectifier waveforms for an R–L load. 

 

 

Fig. 14 single thyristor rectifier with resistive load 

 

When the thyristor is turned on, the voltage across the inductance is 

 

VL = Vs – VR = L did/dt           (7) 

 

 

Where VR is the voltage in the resistance R, given by VR = R*id . If Vs − VR > 0, from Eq. (7) 

holds that the load current increases its value. On the other hand, id decreases its value when 

Vs− VR < 0. The load current is given by 
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id(ωt) = 
 

  
 ∫      

  

 
         (8) 

 

Graphically, Eq. (8) means that the load current id is equal to zero when A1 =A2, maintaining 

the thyristor in conduction state even when Vs < 0. When an                  inductive  active load 

is connected to the rectifier, as illustrated in Fig. 15-b, the thyristor will be turned on if the 

firing pulse is applied to the gate when Vs > Ed . Again, the thyristor will remain in the on-

state until A1 = A2. When the thyristor is turned off, the load voltage will be Vd = Ed . 

 

 

Fig. 15 single thyristor rectifier with: (a) R-L load (b) active load 

 

Single-phase controlled Bridge Rectifier 
Figure 16 shows a fully controlled bridge rectifier, which uses four thyristors to control the 

average load voltage. In addition, Fig. 16-b shows the half-controlled bridge rectifier which 

uses two thyristors and two diodes. The voltage and current waveforms of the fully controlled 

bridge rectifier for a resistive load are illustrated in Fig 17. Thyristors T1 and T2 must be fired 

on simultaneously during the positive half-wave of the source voltage Vs , to allow the 

conduction of current. Alternatively, thyristors T3 and T4 must be fired simultaneously during 

the negative half-wave of the source voltage. To ensure simultaneous firing, thyristors T1 and 

T2 use the same firing signal. The load voltage is similar to the voltage obtained with the bi-

phase half-wave rectifier. The input current is given by 
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is = iT1 – iT4           (9) 

 

Fig. 16 Single phase bridge rectifier (a) fully controlled (b) half controlled 

 

and its waveform is shown in Fig. 17. Figure 18 presents the behavior of the fully controlled 

rectifier with resistive–inductive load (with L  ). The high load inductance generates a 

perfectly filtered current and the rectifier behaves like a current source. With continuous 

load current, thyristors T1 and T2 remain in the       on-state beyond the positive half-wave of 

the source voltage Vs . For this reason, the load voltage Vd can have a negative instantaneous 

value. The firing of thyristors T3 and T4 has two effects: 

(i) They turn-off thyristors T1 and T2  

(ii) After the commutation, they conduct the load current. 

This is the main reason why this type of converters are called “naturally commutated” or 

“line commutated” rectifiers. The supply current iS has the square waveform, as shown in Fig. 

18, for continuous conduction. In this case, the average load voltage is given by 

 

Vdiα = 
 

 
∫              

    

 
      

     

 
            (10) 
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Fig. 17 Waveforms of a fully controlled bridge rectifier with R-load 
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Fig. 18 Waveforms of a fully controlled bridge rectifier with R-L load (L  ) 
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Single-phase inversion circuits 
 

The main objective of static power converters is to produce an Ac output waveform from a dc 

power supply. These are the types of waveforms required in adjustable speed drives (ASDs), 

uninterruptible power supplies (UPSs), static var compensators, active filters, flexible ac 

transmission systems (FACTSs), and voltage compensators, which are only a few applications. 

For sinusoidal Ac outputs, the magnitude, frequency, and phase should be controllable. 

According to the type of ac output waveform, these topologies can be considered as voltage-

source inverters (VSIs), where the independently controlled ac output is a voltage waveform. 

These structures are the most widely used because they naturally behave as voltage sources 

as required by many industrial applications, such as ASDs, which are the most popular 

application of inverters (Fig. 19-a). Similarly, these topologies can be found as current-source 

inverters (CSIs), where the independently controlled Ac output is a current waveform. These 

structures are still widely used in medium-voltage industrial applications, where high-quality 

voltage waveforms are required. Static power converters, specifically inverters, are 

constructed from power switches and the Ac output waveforms are therefore made up of 

discrete values. This leads to the generation of waveforms that feature fast transitions rather 

than smooth ones. For instance, the Ac output voltage produced by the VSI of a three-level 

ASD is a, Pulse Width Modulation (PWM) type of waveform (Fig. 19). Although this waveform is 

not sinusoidal as expected (Fig. 19), its fundamental component behaves as such. This 

behavior should be ensured by a modulating technique that controls the amount of time and 

the sequence used to switch the power valves on and off. 

 

 

Fig. 19 A three level adjustable speed drive scheme and associated waveforms (a) power 

conversion topology (b) ideal input and output waveforms (c) actual input and output 
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waveforms 

 

The modulating techniques most used are the carrier-based technique (e.g. sinusoidal pulse 

width modulation, SPWM), the space-vector (SV) technique, and the selective-harmonic-

elimination (SHE) technique. 

The discrete shape of the ac output waveforms generated by these topologies imposes basic 

restrictions on the applications of inverters. The VSI generates an Ac output voltage waveform 

composed of discrete values (high dv/dt ); therefore, the load should be inductive at the 

harmonic frequencies in order to produce a smooth current waveform. A capacitive load in 

the VSIs will generate large current spikes. If this is the case, an inductive filter between the 

VSI Ac side and the load should be used. On the other hand, the CSI generates an Ac output 

current waveform composed of discrete values (high di/dt ); therefore, the load should be 

capacitive at the harmonic frequencies in order to produce a smooth voltage waveform. An 

inductive load in CSIs will generate large voltage spikes. If this is the case, a capacitive filter 

between the CSI Ac side and the load should be used. A three-level voltage waveform is not 

recommended for medium-voltage ASDs due to the high dv/dt that would apply to the motor 

terminals. Several negative side effects of this approach have been reported (bearing and 

isolation problems). As alternatives, to improve the ac output waveforms 

in VSIs are the multistage topologies (multilevel and multi-cell). The basic principle is to 

construct the required Ac output waveform from various voltage levels, which achieves 

medium-voltage waveforms at reduced dv/dt . Although these topologies are well developed 

in ASDs, they are also suitable for static var compensators, active filters, and voltage 

compensators. Specialized modulating techniques have been developed to switch the higher 

number of power valves involved in these topologies. Among others, the carrier-based (SPWM) 

and SV-based techniques have been naturally extended to these applications.  

In many applications, it is required to take energy from the ac side of the inverter and send it 

back into the dc side. For instance, whenever ASDs need to either brake or slow down the 

motor speed, the kinetic energy is sent into the voltage dc link               (Fig. 19-a). This is 

known as the regenerative operating mode and, in contrast to the motoring mode, the dc link 

current direction is reversed due to the fact that the dc link voltage is fixed. If a capacitor is 

used to maintain the dc link voltage (as in standard ASDs) the energy must either be 

dissipated or fed back into the distribution system, otherwise, the dc link voltage gradually 

increases. The first approach requires the dc link capacitor be connected in parallel with a 

resistor, which must be properly switched only when the energy flows from the motor into the 

dc link. A better alternative is to feed back such energy into the distribution system. 

However, this alternative requires a reversible-current topology connected between the 
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distribution system and the dc link capacitor. A modern approach to such a requirement is to 

use the active front-end rectifier technologies, where the regeneration mode is a natural 

operating mode of the system. 

 

Single-phase Voltage Source Inverters 
Single-phase VSI can be found as half-bridge and full-bridge topologies. Although, the power 

range they cover is the low one, they are widely used in power supplies, single-phase UPSs, 

and currently to form high-power static power topologies, the main features of both 

approaches are reviewed and presented in the following. 

 

Half-bridge VSI 
Figure 20 shows the power topology of a half-bridge VSI, where two large capacitors are 

required to provide a neutral point N, such that each capacitor maintains a constant voltage 

Vi /2. Because the current harmonics injected by the operation of the inverter are low-order 

harmonics, a set of large capacitors (C+ and C−) is required. It is clear that both switches S+ 

and S− cannot be on simultaneously because a short circuit across the dc link voltage source Vi 

would be produced. There are two defined (states 1 and 2) and one undefined (state 3) switch 

state as shown in Table 1. In order to avoid the short circuit across the dc bus and the 

undefined Ac output-voltage condition, the modulating technique should always ensure that 

at any instant either the top or the bottom switch of the inverter leg is on. 

 

Fig. 20 Single phase half bridge VSI 

 

Table 1 Switch states for Single phase half bridge VSI 
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Figure 21 shows the ideal waveforms associated with the half-bridge inverter shown in Fig. 20. 

The states for the switches S+ and S− are defined by the modulating technique, which in this 

case is a carrier-based PWM. 

 

The Carrier-based Pulse Width Modulation (PWM) Technique 
As mentioned earlier, it is desired that the Ac output voltage, Vo = VaN , follow a given 

waveform (e.g. sinusoidal) on a continuous basis by properly switching the power valves. The 

carrier-based PWM technique fulfills such a requirement as it defines the on- and off-states of 

the switches of one leg of a VSI by comparing a modulating signal Vc (desired Ac output 

voltage) and a triangular waveform VΔ  (carrier signal). In practice, when Vc > VΔ  the switch S+ 

is on and the switch S− is off; similarly,              when Vc < VΔ  the switch S+ is off and the 

switch S− is on. 

A special case is when the modulating signal Vc is a sinusoidal at frequency fc and amplitude 

  ̇, and the triangular signal vΔ  is at frequency fΔ  and amplitude   ̇ . This is the sinusoidal 

PWM (SPWM) scheme. In this case, the modulation index ma (also known as the amplitude-

modulation ratio) Is defined as 

ma =   ̇ /  ̇           (11) 

and the normalized carrier frequency mf (also known as the frequency-modulation ratio) is 

mf = fΔ / fc              (12) 

Figure 21-e clearly shows that the Ac output voltage Vo = VaN is basically a sinusoidal waveform 

plus harmonics, which features: (a) the amplitude of the fundamental component of the Ac 

output voltage    
̇  satisfying the following expression: 

   
̇       

̇    
  

 
               (13) 

for ma ≤ 1, which is called the linear region of the modulating technique (higher values of ma 

leads to over-modulation) 
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Fig. 21 The half bridge VSI waveform for the SPWM (ma =0.8, mf =9) (a) carrier and 

modulating signals (b) S+ state (c) S- state (d) Ac output (e) Ac output spectrum (f) Ac output 

current (g) dc current (h) dc current spectrum (i) switch S+ current                 (j) D + current 

 

Square-wave Modulating Technique 
Both switches S+ and S− are on for one half-cycle of the ac output period. This is equivalent 

to the SPWM technique with an infinite modulation index ma. The fundamental ac output 

voltage features amplitude given by 

 

 

 

   
̇       

̇   
 

 
 
  

 
           (14) 

 

And the harmonics feature an amplitude given by  

   
̇     

   ̇

 
            (15) 

Fig. 22 shows output voltage of the half bridge VSI, for square wave modulation technique.  
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Fig. 22 The half bridge VSI, for square wave modulation technique  

 

Full-bridge VSI 
Figure 23 shows the power topology of a full-bridge VSI. This inverter is similar to the half-

bridge inverter; however, a second leg provides the neutral point to the load. As expected, 

both switches S1+ and S1− (or S2+ and S2−) cannot be on simultaneously because a short 

circuit across the dc link voltage source Vi would be produced. There are four defined (states 

1, 2, 3, and 4) and one undefined (state 5) switch state as shown in Table 2. The undefined 

condition should be avoided so as to be always capable of defining the Ac output voltage 

always. In order to avoid the short circuit across the dc bus and the undefined Ac output 

voltage condition, the modulating technique should ensure that either the top or the bottom 

switch of each leg is on at any instant. It can be observed that the Ac output voltage can take 

values up to the dc link value Vi, which is twice that obtained with half-bridge VSI topologies. 

Several modulating techniques have been developed that are applicable to full-bridge VSIs. 

Among them are the PWM (bipolar and unipolar) techniques. 

Bipolar PWM Technique 
States 1 and 2 (Table 2) are used to generate the Ac output voltage in this approach. Thus, 

the Ac output voltage waveform features only two values, which are Vi and −Vi. To generate 

the states, a carrier-based technique can be used as in half-bridge configurations (Fig. 20), 

where only one sinusoidal modulating signal has been used. It should be noted that the on-

state in switch S+ in the half-bridge corresponds to both switches S1+ and S2− being in the on-

state in the full-bridge configuration. Similarly, S− in the on-state in the half-bridge 

corresponds to both switches S1− and S2+ being in the on-state in the full-bridge configuration. 

This is called bipolar carrier-based SPWM. 
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Fig. 23 Single phase full bridge VSI 

 

Table 2 Switch states for a full bridge single phase VSI 

 

The Ac output voltage waveform in a full-bridge VSI is basically a sinusoidal waveform that 

features a fundamental component of amplitude ˆvo1 that satisfies the expression 

   
̇       

̇                    (16) 

In the linear region of the modulating technique (ma ≤ 1), which is twice that obtained in the 

half-bridge VSI. Identical conclusions can be drawn for the frequencies and the amplitudes of 

the harmonics in the Ac output voltage and dc link current, and for operations at smaller and 

larger values of odd mf (including the over-modulation region (ma > 1)), than in half-bridge 

VSIs, but considering that the maximum ac output voltage is the dc link voltage Vi . Thus, in 

the over-modulation region the fundamental component of amplitude    
̇  satisfies the 

expression 

        
̇       

̇  
 

 
                (17) 
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Objectives 
 Presentation of the main mathematics required for modeling, control systems. 

 Providing methods and tools for proper modeling and representation of physical 

systems. 

 

Introduction   

 

The Laplace transform is an operational method that can be used for solving linear 

differential equations. By use of Laplace transforms, we can convert many common functions, 

such as sinusoidal functions, damped sinusoidal functions, and exponential functions, into 

algebraic functions of complex variables. Operations such as differentiation and integration 

can be replaced by algebraic operations in the complex plane. Therefore, a linear differential 

equation can be transformed into an algebraic equation in a complex variable s. If the 

algebraic equation in s is solved for the dependent variable, then the solution of the 

differential equation (the inverse Laplace transform of the dependent variable) may be found 

by use of a Laplace transform table or by use of the partial-fraction expansion technique. An 

advantage of the Laplace transform method is that it allows the use of graphical technique for 

predicting the system performance without actually solving system differential equations. 

Another advantage of the Laplace transform method is that, when we solve the differential 

equation, both the transient component and steady-state components of the solution can be 

obtained simultaneously. Laplace transform is followed by a discussion of aspects of modeling 

control system components and an introduction to the concept of transfer functions. 

Representation of control systems using block diagrams is covered to conclude this chapter. 

 

 

The Laplace Transform   

 

The Laplace transform is one of the most indispensable tools at the disposal of the control 

systems engineering.  The fundamental definition of the Laplace transform X(s) of a time-

varying function x(t) is given by the basic relationship 

 

        ∫           
 

 

 
(1) 

 

 
 

Chapter 5 

Control System Modeling and Representation 



 

 

108 

Note that the operation on the right-hand side of Equation (1) involves the multiplication of 

the variable function x(t), which is assumed to be defined from t = 0 to infinity by the factor 

e-st.   The new variable (s) is called the Laplace operator. The resulting expression is clearly a 

function of s only, as the integration is between zero and infinity. A commonly used notation 

to express the Laplace transform operation is 

 

       {    } (2) 

 

The Laplace transform of some common functions are obtained in the following examples. 

Table 1 lists the Laplace transform of functions encountered in control systems engineering. 

 

TABLE 1 
SOME LAPLACE TRANSFORM PAIRS 

X(t)  X(s) 

Unit impulse δ(t) 1 

Unit step u(t) 
 

 

 
 

t 
 

 

  
 

   
 

  

    
 

     
 

 

   
 

       
 

  

        
 

sin ωt  
 

 

     
 

cos ωt 
 

 

     
 

    sin ωt   

         
 

    cos ωt 
 

   

         
 

 
Example 1 
Find the Laplace transform of the function 

x(t) = eλt     t ≥ 0 
Solution 
Using Eq. (1), we can write 

      ∫          
 

 

 

Thus 

      ∫           
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We can thus conclude that  

 {   }  
 

   
 

(3) 

 
The result of Example 1 is useful in many ways. First, the Laplace transform of the 

exponential function is important and should be memorized. Second, Eq. (3) can be used to 
derive the Laplace transform of other functions. To start, note that a step function u(t) is 
defined as 
 

u(t) = 1 t ≥ 0 

u(t) = 0 t ≤ 0 

 
Note that 

u(t) = e0t (4) 

 
Thus substituting  λ = 0 into Eq. (3) gives us 

 {    }   
 

 
 

(5) 

 
Linear property of the Laplace transform 
Consider two functions x1(t) and x2(t), and two scalars a1 and a2 . Define the sum x3 by 

                      
The Laplace transform of x3(t) is given by 

      ∫ [                
 

 

       

        ∫       
        ∫       

     
 

 

 

 

 

Thus we conclude that 

                      

 
This proves the linear property of the Laplace transform stated as 

 

 {               }     {     }     {     } (6) 

 

 
We can combine (6) with the result of Example 1 to derive the Laplace transform of other 
functions. 

 
Example 2 
Find the Laplace transform of 
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Solution 
First recall Euler’s identity, 

               
Thus 

                

     
        

 
 

     
        

  
 

where,     √  .  
We can thus write  

      
 

  
[                  ] 

         
       

    
Clearly we have 

    
 

  
    

     
 

  
     

      

       
On the basis of Eq. (6) 

 {               }     {     }     {     } (6) 

 

And Eq. (3) 

 {   }  
 

   
 

(3) 

 

 

     
  

    
 

  

    
 

This is reduced to, 

      
 

  
(

   

    
 

    

    
) 

 

     
 

  

 (        )    (        )

     
 

       
             

     
 

Thus,  

 {            }    
             

     
 

(7) 

If  α = 0, we obtain 
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 {      }    
 

     
 

(8) 

For α = π/2, we obtain  

 {      }    
 

     
 

(9) 

 
 

The Inverse Laplace Transform   

 

Consider the simple differential equation 

  

   

   
   

  

  
          

Application of the Laplace transform to both sides, assuming zero initial conditions, gives us 

 

    
                    

 

This is an algebraic equation which can be written as 

 

     
    

           
 

 

Suppose now that the input function u(t) is a unit step; thus 

     
 

 
 

 As a result, the Laplace transform of x(t) is given by 

 

     
 

              
 

 

Finding the function x(t) whose transform is as given above, is symbolized by the inverse 

transform operator  -1; Thus 

 

         {    }     {
 

              
} 

 

A formal definition of the inverse Laplace transform is given by  

 

        {    }  
 

   
∫        

    

    

   
 

(10) 

 

Where α is a real constant. 

It is quite possible (although somewhat difficult) to obtain the inverse Laplace transform by 

performing the integration indicated in Eq. (11). A much more effective way is commonly 

employed in control systems engineering, which relies on performing a partial fraction 

expansion of X(s) as sum of the functions X1(s), X2(s), … , Xn(s). 

 

                         (11) 
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The functions X1(s), X2(s), … , Xn(s) can then be looked up in a table of Laplace transform pairs 

and hence we can obtain the corresponding inverse x1(t), x2(t), … , xn(t). The final result is 

then 

                         (12) 

 

Partial Fraction Expansion Method 

In Control systems analysis, F(s), the Laplace transform of f(t), frequently occurs in the 

form 

 

     
    

    
 

 

where, A(s) and B(s) are polynomials in s. In the expansion of F(s) = B(s)/A(s) into a partial-

fraction form, it is important that the highest power of s in A(s) be greater than the highest 

power of s in B(s). If such is not the case, the numerator B(s) must be divided by the 

denominator A(s) in order to produce a polynomial in s plus a remainder. (This remainder is a 

ratio of polynomials in s whose numerator is of lower degree than the denominator.)  If F(s) is 

broken up into components, 

 

                          

 

and if the inverse Laplace transforms of F1(s), F2(s), …, Fn(s) are readily available, then 

 

   [         [          [            [       

 

   [                          

 

 

 

(13) 

 

where, f1(t), f2(t), …, fn(t) are the inverse Laplace transform of F1(s), F2(s), …, Fn(s), 

respectively. The inverse Laplace transform of F(x) thus obtained is unique except possibly at 

points where the time function is discontinuous. Whenever the time function f(t) and its 

Laplace transform F(s) have a one-to-one correspondence. The advantage of the partial-

fraction expansion approach is that the individual terms of F(s), resulting from the expansion 

into partial fraction form, are very simple functions of s; consequently, it is not necessary to 

refer to a Laplace transform table if we memorize several simple Laplace transform pairs. It 

should be noted, however, that in applying the partial fraction expansion technique in the 

search for the inverse Laplace transform of F(s) = B(s)/A(s) the roots of the denominator 

polynomial A(s) must be obtained in advance. That is, this method does not apply until the 

denominator polynomial has been factored. 

 

Partial Fraction Expansion when F(s) Involves Distinct Poles Only. 

 

Consider F(s) written in the factored form 
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for m < n 

  

where, p1, p2, …,pn and z1, z2, …, zm are either real or complex quantities, but for each 

complex pi or zj there will occur the complex conjugate of pi or zj, respectively. 

 

If F(s) involves distinct poles only, then it can be expanded into a sum of simple partial 

fractions as follows: 

     
    

    
 

  

     
 

  

     
   

  

     
 

 

(14) 

 

where, ak (k = 1, 2, …, n) are constants. 

 

The coefficient ak is called the residue at the pole s =-pk. The value of ak can be found by 

multiplying both sides of equation (2-14) by (s + pk) and letting s = -pk, which gives 

 

[      
    

    
]
     

 [
  

    

       
  

    

         
  

    

        

 
  

    

      ]
     

    

 

We see that all the expanded terms drop out with the exception of ak. Thus the residue ak is 

found from 

 

   [      
    

    
]
     

 
 

(15) 

 

Note that, since f(t) is a real function of time, if p1 and p2  are complex conjugates, then the 

residues a1 and a2 are also complex conjugates. Only one of the conjugates a1 or a2 needs to 

be evaluated because the other is known automatically. 

 

 Referring to Eq. (14) and noting that 

 

   [
  

    
]     

     

f(t) obtained as 

 

        [         
        

               for t ≥ 0 
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Example 3 

Find the inverse Laplace transform of 

 

     
   

          
 

Solution 

The partial fraction expansion of F(s) is 

 

     
   

          
 

  

   
 

  

   
 

 

where, a1 and a2 are found by using equation (2-26): 

 

   [     
   

          
]
    

 [
   

   
]
    

   

 

   [     
   

          
]
    

 [
   

   
]
    

    

 

Thus 

 

        [         [
 

   
]     [

  

   
] 

 

                for t ≥ 0 

 

Example 4 

Find the inverse Laplace Transform of 

 

     
 

                
 

Solution 

We write 

 

     
  

   
 

  

   
 

  

    
 

Thus 

 

A1(s+5)(s+11) + A2(s+2)(s+11) + A3(s+2)(s+5) = 1 

 

Put 

s = -2; A1 = 1/27 

Put 

s = -5; A2 = -1/18 

 

Put 
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s = -11; A3 = 1/54 

As a result, 

     
 

  
(

 

   
 

 

   
 

 

    
) 

 

The inverse Laplace transform is thus 

 

     
 

  
                     

 

Example 5 

Obtain the inverse Laplace transform of 

 

     
           

          
 

 

Solution 

Here, since the degree of the numerator polynomial is higher than that of the denominator 

polynomial, we must divide the numerator by the denominator 

 

 s  + 2 

s2 + 3s + 2 s3 + 5s2 + 9s + 7 

 s3 + 3s2 + 2s 

 0  + 2s2 + 7s + 7 

        2s2 + 6s + 4 

         0   +  s  + 3 

                   

         
   

          
 

 

Note that the Laplace transform of the unit impulse function δ(t) is 1, and that the Laplace 

transform of dδ/dt is s.The third term on the right hand side of the last equation is F(s) in 

Example 2-3. So the inverse Laplace transform of G(s) is given as 

 

 

     
 

  
                       

 

 

for t ≥ 0 

 

 

Example 6 

Find the inverse Laplace transform of 

 

     
     

       
 

 

Solution 
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Notice that the denominator polynomial can be factored as 

 

                         

 

If the function F(s) involves a pair of complex-conjugate poles, it is convenient not to expand 

F(s) into partial fractions but to expand it into the sum of a damped sine and a damped cosine 

function. Noting that s2 + 2s + 5 = (s + 1)2 + 22 and referring to the Laplace transform of e-

αtsinωt and e-αtcosωt, rewritten thus, 

 

 {         }  
 

         
 

 

 {         }  
   

         
 

 

The given F(s) can be written as a sum of a damped sine and a damped cosine functions  

 

     
     

       
 

         

         
 

 

      
 

         
  

   

         
 

 

It follows that 

 

        {    } 

 

         [
 

         
]      [

   

         
] 

 

                         

 

Partial Fraction Expansion when F(s) Involves Multiple Poles. 

 

Instead of discussing the general case, we shall use an example to show how to obtain 

the partial fraction expansion of F(s). Consider the following F(s). 

 

     
       

      
 

 

The partial fraction expansion of this F(s) involves three terms 

 

     
    

    
 

  

   
 

  

      
 

  

      
 

 

where, b3, b2, and b1 are determined as follows. 
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By multiplying both sides of the last equation by (s+1)3, we have 

 

      
    

    
                     

 

(16) 

 

Then letting s = -1, Eq. (2-16) gives 

 

[      
    

    
]
    

    

 

Also differentiation of both sides of Eq. (2-16) with respect to s yields. 

 

  
[      

    

    
]              

 

(17) 

 

 If we let s=-1 in Eq. (2-17), then 

 

 

  
[      

    

    
]
    

    

 

 By differentiating both sides of Eq. (2-17) with respect to s, the result is 

 

  

   
[      

    

    
]      

 

 From the preceding analysis it can be seen that the values of b3, b2 and b1 are 

found systematically as follows: 

 

 

   [      
    

    
]
    

                 

 

 

   {
 

  
[      

    

    
]}

    

 [
 

  
         ]

    
 

 

                

 

 

   
 

  
{

  

   
[      

    

    
]}

    

 
 

  
[
  

   
         ]

    

 
 

 
      

 

We thus obtain 

 

        [      
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        [
 

   
]     [

 

      
]     [

 

      
] 

 

                   

 

                for t ≥ 0  

 

 

Example 7 

Find the Laplace transform of the following function 

 

     
 

       
 

Solution 

We write 

     
  

 
 

  

  
 

  

   
 

 

Thus 

 

                    
    

Put 

s = 0; A2 = 1/3 

Put 

s = -3; A3 = 1/9 

 

To obtain A1 we have to equate coefficient of s2 on both sides to obtain 

        

Thus 

A1 = - 1/9 

As a result 

     
 

 
( 

 

 
 

 

  
 

 

   
) 

 

The inverse Laplace transform is thus given by 

 

      
 

 
             

 

 

Example 8 

Find the Laplace transform of the following function 

 

     
 

       
 

Solution 
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We can write 

     
  

 
 

  

   
 

  

      
 

Thus 

                        

Put 

s = 0; A1 = 1/9 

 

Put 

s = -3; A3 = -1/3 

 

The coefficient of s2 on both sides yields 

        

Thus 

A2 = - 1/9 

As a result,  

     
 

 
[
 

 
 

 

   
 

 

      
] 

 

The inverse Laplace Transform is thus given by 

 

     
 

 
                

 

Solution of Linear Time-Invariant, Differential Equations  

 

The Laplace transform can be used for solving linear time-invariant differential equations 

with known initial conditions. In solving differential equations two steps are involved. 

 

 Step 1. By taking the Laplace transform of each term in the given differential 

equation. Convert the differential equation into an algebraic equation in s. Obtain 

the expression for the Laplace transform of the dependant variable by rearranging 

the algebraic equation. 

 Step 2. The time solution of the differential equation is obtained by finding the 

inverse Laplace transform of the dependant variable. In the following discussion, two 

examples are used to demonstrate the solution of linear, time-invariant, differential 

equation by the Laplace transform method. 

 

Example 9 

Find the solution x(t) of the differential equation 
 ̈    ̇    =0         ̇      

 
where, a and b are constants.  
Solution 

By writing the Laplace transform of x(t) as X(s) or 
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 [           

we obtain 

 

 [ ̇             

 

 [ ̈                ̇    

 

And so the given differential  equation becomes  

 

[              ̇      [                    

 

By substituting the given initial conditions into this last equation, we obtain 

 

[              [                 

 

Or  

                      

 

Solving for X(s), we have 

 

     
       

       
 

       

          
 

    

   
 

   

   
 

 

The inverse Laplace transform of  X(s) gives 

 

        [
    

   
]     [

   

   
] 

 

                        ,        for t ≥ 0 

 

which is the solution of the given differential equation. 

Notice that the initial conditions a and b appear in the solution. Thus x(t) has no 

undetermined constants. 

 

 

Example 10 

Find the solution x(t) of the differential equation 

 

 ̈    ̇               ̇      

 

Solution 

Noting that  [      ,        ,   and   ̇     ,  

The Laplace transform of the differential equation becomes 
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Hence the inverse Laplace transform becomes 

 

        [      

 

     
 

 
   [

 

 
]  

 

  
   [

 

         
]  

 

 
   [

   

         
] 

 

     
 

 
 

 

  
         

 

 
                    for t ≥ 0 

 

which is the solution of the given differential equation. 

 

 

 

Elementary Physical System Models 

 

Control system engineers use physical laws that describe the interaction between variables of 
interest in the system under consideration. We use the simple laws of the system elements. In 
this lecture we discuss several laws of simple elements. 

 
Passive Elements 

 Passive elements in electric circuits are the resistance R, the inductance L, and the 

capacitance C. The relation between the voltage across v(t) and current through i(t) 

depends on the element. 

 For a resistance element we have 

           

Taking Laplace transform: 

           
 For an inductance we have 

      
     

  
 

Taking the Laplace transform with zero initial condition, 

            
 For a capacitance we have 

     
 

 
∫        

Taking the Laplace transform with zero initial condition, 
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Kirchhoff’s laws are also useful (described in a later chapter). 

 

 
Transfer Functions   

 

A transfer function is defined as the ratio of the Laplace transform of the output variable 
in a linear time-invariant dynamic system to the Laplace transform of the input variable with 
zero initial conditions. A number of examples is given below, together with the derivations 
associated with simple dynamic systems.  
 

 Direct Current Generator 

Figure 1 shows a diagram of separately excited dc generator. The input voltage vi(t) 
produces a current if(t) in the field circuit. 

 

 

Figure 1: Schematic diagram of a dc generator. 

 
Assuming that the field circuit resistance is Rf and the inductance is Lf, we can write 

                

      

  
 

Assuming that the magnetization characteristic of the machine is linear in the region of 
interest, and that the generator is driven at constant speed, we can write the output voltage 
as 

              
Where, Kg is proportionality constant. 
 Now taking the Laplace Transform of the foregoing two equations we find that: 

      (      )      

              
As a result, the transfer function between input and output voltages is given by 

     

     
 

  

      
 

 Amplidyne 

The amplidyne is a two-stage dc generator, as shown in Figure 2. 
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Figure 2. The amplidyne. 

 
Assume that the control winding’s resistance and inductance are denoted as Rc and Lc. Let the 
control (input) voltage is vc(t) and the current in the control winding is ic(t). We have  

                

   
  

 

 
The electromotive force (emf) developed in the quadrature axis winding is proportional to the 
field current. 
Thus 

               
where Kcq is a constant for constant speed of rotation.  
 The quadrature-axis voltage eq(t) produces a current iq(t)  assuming that Rq and Lq are the 
resistance and inductance values for the quadrature-axis winding. 
Thus we write  

                

   

  
 

The quadrature-axis current sets up a flux, which in turn produces the output voltage vd (t) 
according to 

               
The Laplace domain equation for the above time domain equations are: 

      
     

      
 

               

      
     

      
 

               
As a result, we have 

     

     
 

      

(      )        
 

which is the transfer function of the amplidyne. 
 

 Field Controlled DC Motor 

In a field controlled dc motor (Figure 3), the voltage input is fed to the field, which can 
be modeled as a resistance Rf in series with the inductance Lf. A field current if(t) is 
established in accordance with 
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The field current sets up a flux which together with the rotational speed of the motor 
develops a back emf em(t). 

 
Figure 3. A field controlled dc motor. 

Assuming a linear (straight line) relation between em and if for a given rotational speed ωm, 
we can write 

 

                

  
The parameter Km is a constant that depends on the motor’s design particulars. The motor’s 
developed electrical power is given in terms of the armature current Ia and the back emf as 

              
Note that the armature current is assumed constant. We thus can write 

                     
Assuming that the electrical power Pe(t) suffers no losses in being transmitted as mechanical 
power Pm(t), we can write 

            
We know that the mechanical power is the product of torque and angular velocity, thus 

             
 It is thus clear that under the foregoing assumptions, we can write the developed torque 

as  

             

where,  

        
As a result, we conclude that the motor’s torque is proportional to the field current. The 
torque equation; expressed in the Laplace transform is 

             
The relation between the field current and the input voltage is 

      
     

      
 

As a result we conclude that the transfer function between the input voltage and output 
torque can be written as  

    

     
 

  

      
 

 Armature Controlled DC Motor 

If the input voltage to the dc motor is fed to the armature circuit, while field current is 
maintained constant, we say that the motor is armature controlled. 
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Figure 4. Schematic diagram of an armature-controlled dc motor. 

 
 
With reference to Figure 4, we can write the loop equation 

                      

   
  

 

In this equation Ra and La are the resistance and the inductance of the armature circuit, 
respectively. 
Thus 

                      

   
  

 

The armature current is denoted by ia(t), while the motor’s back emf is denoted by em(t). The 
input voltage is denoted by vi(t). Since the field current is fixed at If, we write: 

                
The torque developed by the motor under assumptions similar to those stated for the field 
controlled dc motor can be obtained from 

                          
Thus  

               
Let us define an armature controlled motor constant Ka by 

        

As a result, we write 

              
             

Thus the back emf and torque are proportional to the motor’s velocity and armature current, 
respectively. From the previous discussions we can write the previous equations transformed 
into Laplace domain. 
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Thus the Laplace transform of the developed torque is given by: 

     
       

        
 

  
      

        
 

 
This equation is not a single-input output relationship and thus a straightforward transfer 
function cannot be obtained for T(s) in terms of the input voltage. It is possible, however, to 
obtain a transfer function between ωm(s) and Vi(s) as indicated below. Assume that the motor 
is driving a load such that no opposing torque Ti exists. We can thus write 

     (        )      

where, Jeq is the moment of inertia of the rotating parts, and Beq is a term denoting friction 
coefficient.  

We can thus eliminate T(s) to obtain: 

(        )      
       

        
 

  
      

        
 

or, 

       

        
 [(        )  

  
 

        
]      

 

As a result, a transfer function between ωm(s) as output and Vi(s) as input can be written as: 

 

       

        
 [

(        )           
 

        
]      

 

     

     
 

  

        
[

        

  
  (        )        

] 

 

     

     
 

  

  
  (        )        

 

 

 Two-Phase Servomotor 
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In a two-phase servomotor (Figure 5a) the torque decreases linearly with the speed increase 
for a constant control winding voltage. 

 

Figure 5. Two-phase servomotor characteristics and diagram 

 

As the control winding voltage is increased, the torque-speed characteristic is raised as 
shown in Figure 5b. We can thus model the motor’s developed torque by 

 

                     

where Kn and Kc are constants. 

We know that the speed ω is equal to the time derivative of the angle θ. Thus the last 
equation can be rewritten as: 

 

         ̇            

 

The torque balance equation for the two-phase servomotor is: 

       ̈    ̇ 

where J is the moment of inertia of the motor and load referred to the motor shaft, and B is 
the friction coefficient. 

Equating the last two relationships: 

  ̈          ̇          
Noting that the control voltage ec(t) is the input and the displacement angle θ is the output, 
we see that the transfer function of the system is given by: 

 

    

     
 

  

           
 

        ⁄

[          ⁄   
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        ⁄

 {[         ⁄   }
 

  

        
 

 
where, Km= Kc / (B + Kn) = motor gain constant, and Tm = J / (B + Kn) = motor time constant  

 

Mechanical Translation Elements 
Newton’s law as applied to mechanical systems states that the sum of the forces applied 

to an element is equal to the sum of the reaction forces. There are three basic elements in a 
mechanical translation system model. These are the mass M, the stiffness K, and the damping 
(viscous friction) B. A force F applied to a mass M produces an acceleration a of the mass. The 
reaction force to F is given by 

F = M a 
If the translation is x, the acceleration is given by 

 

  
   

   
 

Thus for the mass we have 

    
   

   
 

 
A diagram showing a mass is given in Figure 6a. The elastance, or stiffness, K of a spring 
provides a reaction force that is proportional to the deformation Δx of the spring. 

 

FK = K Δx 
Note that in Figure 6b, 
 

Δx =x1 –x2 

 

Viscous friction or damping B involves energy absorption. The damping force is proportional to 
the difference of the velocities of the two bodies (Figure 6c). 

 
Figure 6. Elements of Mechanical Translation System. 

    (
   

  
 

   

  
) 

 

Mechanical Rotational Elements 
Rotational systems involve elements and variables that correspond to those in a 

translation system (Figure 7).  The body’s moment of inertia J corresponds to the mass M in 
writing the dynamical equation. The angular displacement θ correspond to the translational 
displacement x. The angular velocity ω corresponds to the translation velocity v. The angular 
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acceleration corresponds to the translational acceleration a.  Torque equations for rotational 
systems are parallel to force equations in transitional systems. For a body with a moment of 
inertia J, an applied torque T produces an angular acceleration d2θ/dt2. The reaction torque 
TJ is in opposition to T, with a torque equation given by 

    
   

   
 

The stiffness torque TK  is produced by a spring of stiffness K if it is twisted by angle Δθ by an 
applied torque T.  We have 

TK = K(θ1 – θ2) 
Damping is encountered wherever a body moves through a fluid. The damping torque TB is 
equal to the product of damping B and the relative angular velocity of the damper and is in 
opposition to the applied torque: 

    (
   

  
 

   

  
) 

 

 
Figure. 7. Elements of Mechanical Rotational Systems 

 

Gear Trains 
A normal practice in coupling motors to loads is to employ a gear train to transmit the 

driving torque to the load. An analysis of such a case is important to evaluate the moment of 
inertia and damping of the load relative to the motor. Figure 8 shows a driving motor that 
supplies input torque Tm at an angular velocity ωm to a load through a gear train having a gear 
ratio of Nm/Nl. The load torque is denoted by Tl and its angular velocity is denoted by ωl. 

 

 

Figure 8. Schematic diagram of a gear train. 

 
The inertia and viscous friction of the motor are denoted by Jm and Bm. In a similar way Jl and 
Bl are moment of inertia and viscous friction of the load. The torque balance equation on the 
motor side is given by: 

 

      ̈     ̇      

 
Thus the torque provided by the motor is equal to the sum of motor inertial and friction 
torques and the torque Tml transmitted through the gears. Assuming no power loss in the 
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gears, we can write the power equation: 

 

           ̃     
 
This is a restatement of the fact that power is the product of torque and angular velocity. We 
also know that: 

 

  

  
 

  

  
 

 
Thus we can write the driving torque on the load side as 

 

 ̃      

  

  
    

  

  
 

 
Now the load side a driving torque balance equation can be written as 

 

 ̃      ̈     ̇     

 

In terms of the motor’s angular velocity  ̇  and angular acceleration we thus have 

 

 ̃   (   ̈     ̇ )
  

  
    

 
Or 

     ̃  

  

  
 (   ̈     ̇ ) (

  

  
)
 

   

  

  
 

As a result, we can assert the motor’s driving torque is given by 

 

   (   (
  

  
)
 

  )  ̈  (   (
  

  
)
 

  )  ̇    

  

  
 

 
This result shows that an equivalent moment of inertia Jeq and an equivalent viscous friction 
Beq are experienced by the motor: 

 

       (
  

  
)
 

   

       (
  

  
)
 

   

 The load torque is seen by the motor as 
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 ̃    

  

  
 

 
Thus the motor’s developed torque is given by 

       ̈      ̇   ̃  

 
 
 
 

Some Transfer Functions of physical Systems   

 

A transfer function has been stated as the ration of the Laplace transform of the output 
variable in a linear time invariant dynamic system to the Laplace transform of the input with 
zero initial condition. Here is a number of applications. 
 
RC Circuit 

 Consider the RC integrating circuit of Figure 9. 

 

 

Figure 9. RC integrating circuit 

 

The input voltage is: 

      (  
 

  
)      

The output voltage is 

      
 

  
     

The transfer function is thus 
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 Consider the RC Differentiating circuit of Figure 10. 

 

Figure 10. RC differentiating circuit. 

 

      (  
 

  
)      

 

            

 

     

     
 

 

     ⁄
 

   

     
 

 

 

Spring-Dashpot system of Figure 11. 

 

We can write the force balance equation as 

  ̇          

Applying Laplace transform, we have 

                   

As a result, the transfer function is given by 
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     ⁄   
 

 

 

Figure. 11. Spring-Dashpot System. 

 

Note the similarity of this transfer function and that of the RC integrating circuit. Consider 
the Spring-Dashpot system of Figure 11, which has B and K interchanged, as shown in Figure 
12. The force balance equation is given by: 

   ̇   ̇         

Thus the transfer function can be written as: 

     

     
 

  

    
 

 

Figure 12. Dashpot-Spring System 

 



 

 

134 

The above function is similar to that of the differentiating RC circuit. 

 

Mechanical rotational system of Figure 13. 

 

 

Figure 13. Rotating body 

We can write: 

 
  

  
      

Thus  

    

    
 

 

    
 

The transfer function obtained, relates the transferred output velocity to the transform of the 
input torque, in the presence of the moment of inertia J and viscous friction B. 

 

Mechanical translation system of Figure 14. 

 

Figure 14. Spring-mass-dashpot system. 

The system consists of a spring-mass-dashpot combination. We can write the force balance 
equation as 
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  ̈    ̇       

As a result, the transfer function is obtained as 

    

    
 

 

        
 

 

RLC circuit of Figure 15. 

 

Figure 15. RLC circuit. 

      (     
 

  
)      

      
 

  
     

Thus the transfer function is given by 

     

     
 

 

          
 

 

This is very similar to the spring-mass-dashpot system. 

 

 

 

 

 

 

Lead-lag RC circuit of Figure 16. 
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Figure 16. Lead-lag RC circuit 

 

We can write the following impedance function 

 

   
     ⁄

      ⁄
 

  

       
 

 

Let          

Thus  

   
  

     
 

 

Also 

      
 

   
 

       

   
 

Let 

        

Thus 

   
     

   
 

The transfer function is thus given by 
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Let         ;  

thus 

 

     

     
 

              

                     
 

 

We can rewrite this equation as 

 

     

     
 

     

     

     

     
 

Where 

          

                
 

 

 

Problems 

 

1) Find the Laplace Transform of f(t) defined by: 
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2) Find the inverse Laplace Transform of F(s), where 
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3) Obtain the inverse Laplace transform of 
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4) Find the inverse Laplace Transform of  
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5) Solve the differential equation: 
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Objectives 
 Basics of block diagrams. 

 Representation of transfer functions. 

 Transfer functions presentation of some practical systems. 

 

Definition   

 

A pictorial representation of the relationships between system variables is offered by 
the block diagram. In a block diagram three ingredients are commonly present. 

 
1. Functional block 

This is a symbol representing the transfer between the input U(s) to an element and the 
output X(s) of the element. The block contains the transfer function G(s), as shown in Figure 
1. 

 

 

Figure 1. Functional block 

 
The arrow directed into the block represents the input U(s), while that directed out of the 
block represents the output X(s). The block shown in the figure represents the algebraic 
relationship 

X(s) = G(s) U(s) 

 
2. Summing point 

This is a symbol denoted by a circle, the output of which is the algebraic sum of the 
signals entering into it. A minus sign close to an input signal arrow denotes that this signal is 
reversed sign in the output expression.  Figure 2 shows the relationship 

E(s) = R(s) – C(s) 
 

 
 

Chapter 6 

Block Diagrams and Analysis of the Responses 
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Figure 2. Summing point. 

 
3. Branching (or takeoff) point.  

A branching point in a block diagram signifies that the same variable is being utilized 
elsewhere, as shown in Figure 3. 

 

 

Figure 3. Branching point. 

 
A fundamental block diagram configuration is the single-loop feedback system shown in Figure 
4a. The output variable C(s) is modified by the feedback element with transfer function H(s) 
to produce the signal B(s): 

B(s) = C(s) H(s) 
The signal B(s) is compared to a reference signal R(s) to produce the error signal E(s). 

E(s) = R(s) – B(s) 

 

 

Figure 4. Feedback system. (a) Single-loop; (b) Equivalent of single-loop 

 
The error signal actuates the plant with transfer function G(s) to produce the output C(s): 

C(s) = G(s) E(s) 

 
Combining the above three equations: 

 

E(s) = R(s) – C(s) H(s) 
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(C(s)/G(s)) = R(s) – C(s) H(s) 

 

R(s) = (C(s)/G(s)) + C(s) H(s) 

 

         (
          

    
) 

 

 
    

    
 

    

          
 

 
As a result, we conclude that Figure 4b represents an equivalent of Figure 4a. 

 
To obtain the overall relationship between the outputs and inputs of complex systems, we 
often have to eliminate variables in the system representation. We consider here the transfer 
functions of cascaded elements as shown in Figure 5a. We write 

X2 = G1 X1 

X3 = G2 X2 = G1 G2 X1 

 
Thus we can obtain the reduction shown in Figure 5b. 
We can further write  

X4 = G3 X3 = G1 G2 G3 X1 

Thus a single equivalent as shown in Figure 3.5c is obtained with 

G = G1 G2 G3 

  

 

 

 

 
Table 1 shows some important equivalents in block diagram manipulations. 
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Figure 5. Cascaded system and the steps in its reduction. 

  

Table 1. 

Block diagram reduction equivalents 

Original Configuration                         Alternate Configuration 

 

 

(a) 

 

(b) 
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(c) 

 

 

(d) 

 

(e) 

 

 

(f) 

 

(g) 
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(h) 
Example 1. 
Simplify the block diagram of Figure 5.6. 

 

 

Figure 6. Block diagram or example 1. 

 
Solution 

 First, move the branching point b to a as shown in Figure 7(a).  

 

Figure 7(a) 

 

 Now we see that G1 and G2 are in parallel, and we reduce the figure to that of Figure 

7(b). 
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Figure 7(b) 

 

 The feedback loop with a forward gain of 1 and feedback element G2H can be reduced as 

shown in Figure 7(c). 

 

 

Figure 7(c). 

 

 Finally, Figure 7(d) shows the overall transfer between R and C. 

 
Figure 7(d). 

 
Example 2 

 
Use block diagram reduction techniques to obtain the ratio C/R for the system shown in the 
block diagram of Figure 8. 

 

 

Figure 8. Example 5.2. 
Solution 

 The following Figure shows the steps of block diagram reduction. 
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Figure 9. Steps in the foregoing Figure 5.8. 

  

 As a result of this procedure, we conclude that 

 

 
 

      

        (  
  

  
 

  

  
)
 

 

Block Diagram of a Field-Controlled DC Motor 
We have seen that the transfer function between the field voltage and the output torque of a 
field-controlled DC motor is given by: 

 

    

     
 

  

      
 

 
This is represented in block diagram form in the first block of Figure 10. 
 

 
Figure 10. Block diagram of a field-controlled dc motor. 

 
Assume now that the motor is driving a load torque Tl through a gear train of speed ration 
Nm/Nl . The motor’s inertia and viscous friction are Jm and Bm , and the load’s inertia and 
viscous friction are Jl and Bl. We know that 
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      ̈      ̇   ̃  

In the s domain this is written as 

     (    
      )       ̃     

This equation is realized in block diagram form by the right-hand block if Figure 5.10. 

 

Block Diagram of Armature-Controlled DC Motor 

 
We know that the developed torque is given by  

     
       

      
 

  
      

      
 

With a load torque we write 

 

     (    
      )       ̃     

 

     (        )       ̃     

 
A block diagram can be constructed as shown in Figure 11a. Note the presence of a feedback 
path to account for the effect of the motor’s velocity on armature current. By moving the 
load torque summing junction to the left- hand side as shown in Figure 11b, we can see that 

the motor is in actual fact subject to two inputs: Vi(s) and  ̃    . 

 
(a) 

 
(b) 

Figure 11. Block Diagram of an Armature-Controlled DC Motor.  
 

Block Diagram of DC Generator  
It is a simple matter to demonstrate that the block diagram of Figure 12 represents the dc 
generator. 
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Figure 12. Block Diagram of DC Generator. 
 

Block Diagram of Amplidyne  
Figure 13 shows the block diagram representation of the amplidyne discussed earlier. 

 

 
Figure 13. Block diagram of the amplidyne. 

 

Transient and Steady-State Response Analyses 
Various methods are available for the analysis of the system performance. In practice, 

the input signal to a control system is not known ahead of time. In analyzing and designing 

control systems, we must have a basis of comparison of the performance of various control 

systems. This basis may be set up by specifying particular test input signals, and by comparing 

the responses of carious systems to these input signals. Many design criteria are based on the 

response to such signals or on the response of systems to changes in initial conditions (without 

any test signals).  

The use of test signals can be justified because of a correlation existing between the 

response characteristics of a system to a typical test input signal and the capability of a 

system to cope with actual input signals. 

 

Typical Test Signals 

 

The commonly used test input signals are those of step functions, acceleration functions, 

sinusoidal functions, and the like. With these test signals, mathematical and experimental 

analyses of control systems can be carried out easily since the signals are very simple 

functions of time. Which of these typical input signals to use for analyzing system 

characteristics? The answer is determined by the form of the input that the system will be 

subjected to most frequently under normal operation. If the inputs to a control system are 

gradually changing functions of time, then a ramp function of time may be a good test signal. 

Similarly, if a system is subjected to sudden disturbances, a step function of time may be a 

good test signal. 

For a system subjected to shock inputs, an impulse function may be best. Once a control 

system is designed on the basis of test signals, the performance of the system in response to 

actual inputs is generally satisfactory. The use of such test signals enables one to compare the 

performance of all systems on the same basis. 

 

Transient Response and Steady-State Response 

 

The time response of a control system consists of two parts: the transient response and 

the steady state response. By transient response, we mean that which goes from the initial 

state to the final state. By steady-state response, we mean the manner in which the system 

output behaves as t approaches infinity. Thus, the system response can be written as 
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where, ctr(t) is the transient response, and css(t) is the steady-state response. 

 

Absolute Stability, Relative Stability, and Steady-State Error 

The most important characteristic of the dynamic behavior of a control system is absolute 

stability, i.e. whether the system is stable or unstable. A control system is stable if, in the 

absence of any disturbance or input, the output stays in the same state. A linear control 

system is stable if the output eventually comes back to its equilibrium state when the system 

is subjected to an initial condition. A linear control system is critically stable if it oscillations 

of the output continue forever. It is unstable if the output divers without bound from its 

equilibrium state when the system is subjected to an initial condition. Important system 

behavior includes relative stability and steady-state error. 

Since a physical control system involves energy storage, the output cannot follow the 

input immediately but exhibits a transient response before a steady-state can be reached. 

The transient response often exhibits damped oscillations before reaching steady state. If the 

output of a system at steady state does not exactly agree with the input, the system is said to 

have steady-state error. This error is indicative of the accuracy of the system. In analyzing a 

control system, we must examine transient-response behavior and steady-state behavior. 

 

 

First-Order Systems 

Consider the block diagram of a first-order system shown in Figure 13a. Physically this block 

diagram represents an RC circuit, or a thermal system. A simplified block-diagram is shown in 

Figure 13b. The input-output relationship is given by: 

 

    

    
 

 

    
 

 

We shall analyze the system responses to such inputs as the unit step, unit ramp, and unit 

impulse functions. The initial conditions are assumed to be zero. The following analysis is 

correct, whatever the physical system is, as long as the transfer function is the same. 
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Figure 13. Block diagram of a first-order system. 

 Unit-Step Response of First-Order Systems 

Since the Laplace transform of the unit-step function is 1/s, substituting R(s) = 1/s into the 

above equation, we obtain 

     
 

    

 

 
 

 Expanding  C(s) into partial fractions gives: 

     
 

 
 

 

    
 

 

 
 

 

   
 
  

 

 

Taking the inverse Laplace transform of the above equation, we obtain: 

                                for t ≥ 0 

The last equation states that initially the output c(t) is zero and finally it becomes unity. One 

important characteristic of such an exponential response curve c(t) is that at t = T the value 

of c(t) is 0.632, or the response has reached 63.2% of its total change. This may be easily seen 

by substituting t =T in c(t).  

                

It is to be noted that the smaller the time constant T, the faster the system response. Another 

important characteristic of the exponential response curve is that the slope of the tangent 

line at t = 0 is 1/T, since 

  

  
     

 

 
          

 

 
 

The output would reach the final value at t=T if it maintained its initial speed of response. 

From the preceding exponential equation we see that the slope of the response curve c(t) 

decreases monotonically from 1/T at t = 0 to zero at t =  . The exponential response curve is 

shown in Figure 14. 
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Figure 14. Exponential response curve,   

 

In one time constant, the exponential response curve has gone from 0 to 63.2% of the final 

value. In two time constants, the response reaches 86.5% of the final value. At t = 3T, 4T, 5T, 

the response reaches 95%, 98.2% and 99.3%, respectively, of the final value. Thus, for t ≥ 4T, 

the response remains within 2% of the final value. The exponential equation states that the 

steady-state is reached only at t = ∞. 

In practice, a reasonable estimate of the response time is the length of time the 

response curve needs to reach and stay within 2% less than the final value, or four time 

constants. 

 Unit-Ramp Response of First-Order Systems. 

Since the Laplace transform of the unit-ramp function is 1/s2, we obtain the output of the 

system of Figure 13 as: 

     
 

    
 
 

  
 

Expanding C(s) into partial fractions gives: 

     
 

  
 

 

 
 

  

    
 

Taking the inverse Laplace transform of the last equation, we obtain: 

               ,          for t ≥ 0. 

The error signal e(t) is then: 
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      (    
 
 ) 

As t approaches infinity, e-t/T approaches zero, and thus the error signal e(t) approaches T, or 

       

The unit-ramp input and the unit output are shown in Figure 15. The error in following the 

unit-ramp input is equal to T for sufficiently large t. The smaller the time constant T, the 

smaller the steady-state error in following the ramp input. 

 

Figure 15. Unit-ramp response of the first order system. 

 

 Unit-Impulse Response of First-Order Systems. 

For the unit-impulse input, R(s) = 1 and the output of the system of Figure 13 can be 

obtained as:  

     
 

    
 

The inverse Laplace transform of the foregoing equation gives: 

     
 

 
                       for t ≥ 0 

The response is given by the following equation and is shown in Figure 16. 
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Figure 16. Unit impulse response of the first-order system. 

 

An Important Property of Linear Time-Invariant Systems. 

In the above analysis, it has been shown that for the unit-ramp input the output c(t) is 

               ,          for t ≥ 0. 

For the unit-step input, which is the derivative of unit-ramp input, the output c(t) is 

                                for t ≥ 0 

Finally, for the unit-impulse input, which is the derivative of unit step input, the output c(t) is 

     
 

 
                       for t ≥ 0 

 

Comparing the system response to these three inputs clearly indicates that the response 

to the derivative of an input signal can be obtained by differentiating the response of the 

system to the original signal. It can be also seen that the response to the integral of the 

original signal can be obtained by integrating the response of the system to the original and 

by determining the integration constant from the zero output initial condition. Systems 
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